Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales
Abstract
:1. Introduction
2. Hybrid Solar and Wind-Prediction Performance Analysis
2.1. Data
2.2. The Coupled Autoregressive and Dynamical System (CARDS) for Solar
2.3. The Modified CARDS for Wind
2.4. Hybrid Solar and Wind
3. Error Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
CARDS | coupled autoregressive and dynamical system |
AR | autoregressive |
OSL | ordinary least squares |
SETAR | self-exciting threshold autoregressive |
STAR | smooth transition autoregressive |
MeAPE | median absolute percentage error |
MBE | mean bias error |
NRMSE | normalized root mean square error |
References
- Lund, H.; Munster, E. Integrated energy systems and local energy markets. Energy Policy 2006, 34, 1152–1160. [Google Scholar] [CrossRef]
- Li, F. Market Reforms for Integrated Local Energy Systems. Proc. Chin. Soc. Electr. Eng. 2015, 35, 3693–3698. [Google Scholar]
- Von Wirth, T.; Gislason, L.; Seidl, R. Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance. Renew. Sustain. Energy Rev. 2018, 82, 2618–2628. [Google Scholar] [CrossRef]
- Blechinger, P.; Cader, C.; Bertheau, P.; Huyskens, H.; Seguin, R.; Breyer, C. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands. Energy Policy 2016, 98, 674–687. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Al-Shammaa, A.A. Optimal configuration for isolated hybrid renewable energy systems. J. Renew. Sustain. Energy 2016, 8, 045502. [Google Scholar] [CrossRef]
- Dagdougui, H.; Ouammi, A.; Sacile, R. A regional decision support system for onsite renewable hydrogen production from solar and wind energy sources. Int. J. Hydrog. Energy 2011, 36, 14324–14334. [Google Scholar] [CrossRef]
- Wolfgang, O.; Henden, A.L.; Belsnes, M.M.; Baumann, C.; Maaz, A.; Schaefer, A.; Moser, A.; Harasta, M.; Doble, T. Scheduling when reservoirs are batteries for wind- and solar-power. Energy Procedia 2016, 87, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Dali, M.; Belhadj, J.; Roboam, X. Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management—Experimental investigation. Energy 2010, 35, 2587–2595. [Google Scholar] [CrossRef]
- Kala, P.; Arora, S. A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew. Sustain. Energy Rev. 2017, 76, 905–931. [Google Scholar] [CrossRef]
- Michiorri, A.; Lugaro, J.; Siebert, N.; Girard, R.; Kariniotakis, G. Storage sizing for grid connected hybrid wind and storage power plants taking into account forecast errors autocorrelation. Renew. Energy 2018, 117, 380–392. [Google Scholar] [CrossRef]
- Orchi, T.F.; Mahmud, M.A.; Oo, A.M.T. Generalized Dynamical Modeling of Multiple Photovoltaic Units in a Grid-Connected System for Analyzing Dynamic Interactions. Energies 2018, 11, 296. [Google Scholar] [CrossRef]
- Sukumar, S.; Marsadek, M.; Ramasamy, A.; Mokhlis, H.; Mekhilef, S. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System. Energies 2017, 10, 1720. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z. The development and application practice of wind-solar energy hybrid generation systems in China. Renew. Sustain. Energy Rev. 2009, 13, 1504–1512. [Google Scholar] [CrossRef]
- Bekele, G.; Palm, B. Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia. Appl. Energy 2010, 87, 487–495. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Micangeli, A.; del Citto, R.; Kiva, I.N.; Santori, S.G.; Gambino, V.; Kiplagat, J.; Vigano, D.; Fioriti, D.; Poli, D. Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya. Energies 2017, 10, 2041. [Google Scholar] [CrossRef]
- Lukasievicz, T.; Oliveira, R.; Torrico, C. A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation. Energies 2018, 11, 411. [Google Scholar] [CrossRef]
- Vasilj, J.; Sarajcev, P.; Jakus, D. Estimating future balancing power requirements in wind-PV power system. Renew. Energy 2016, 99, 369–378. [Google Scholar] [CrossRef]
- Peng, C.; Zou, J.; Zhang, Z.; Han, L.; Liu, M. An Ultra-Short-Term Pre-Plan Power Curve based Smoothing Control Approach for Grid-connected Wind-Solar-Battery Hybrid Power System. IFAC Papersonline 2017, 50, 7711–7716. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renew. Power Gener. 2018, 12, 72–80. [Google Scholar] [CrossRef]
- Petrakopoulou, F.; Robinson, A.; Loizidou, M. Simulation and evaluation of a hybrid concentrating-solar and wind power plant for energy autonomy on islands. Renew. Energy 2016, 96, 863–871. [Google Scholar] [CrossRef]
- Murat, G. Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications. Desalination 2018, 435, 210–220. [Google Scholar]
- Quan, D.M.; Ogliari, E.; Grimaccia, F.; Leva, S.; Mussetta, M. Hybrid model for hourly forecast of photovoltaic and wind power. In Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ), Hyderabad, India, 7–10 July 2013; pp. 1–10. [Google Scholar]
- Zhang, Q.; Lai, K.K.; Niu, D.; Wang, Q.; Zhang, X. A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power. Energies 2012, 5, 3329–3346. [Google Scholar] [CrossRef]
- Huang, J.; Korolkiewicz, M.; Agrawal, M.; Boland, J. Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model. Sol. Energy 2013, 87, 136–149. [Google Scholar] [CrossRef]
- Lazard. In Lazard’s Latest Annual Levelized Cost of Energy Analysis (LCOE 11.0). 2017. Available online: https://www.lazard.com/perspective/levelized-cost-of-energy-2017 (accessed on 12 January 2018).
- Lucheroni, C. Resonating models for the electric power market. Phys. Rev. E 2007, 76, 056116. [Google Scholar] [CrossRef] [PubMed]
- Boland, J.; Hollands, K. Time series analysis of climatic variables (vol 55, pg 377, 1995). Sol. Energy 1996, 56, 637. [Google Scholar]
- Boland, J. Time Series and Statistical Modelling of Solar Radiation, Recent Advances in Solar Radiation Modelling; Badescu, V., Ed.; Springer: Berlin, Germany, 2008; pp. 283–312. [Google Scholar]
- Huang, J. Forecasting wind and solar energy on short time scales. Bull. Aust. Math. Soc. 2014, 89, 173–174. [Google Scholar] [CrossRef]
- Pinson, P.; Christensen, L.E.A.; Madsen, H.; Sorensen, P.E.; Donovan, M.H.; Jensen, L.E. Regime-switching modelling of the fluctuations of offshore wind generation. J. Wind Eng. Ind. Aerodyn. 2008, 96, 2327–2347. [Google Scholar] [CrossRef] [Green Version]
- Hoff, T.E.; Perez, R.; Kleissl, J.; Renne, D.; Stein, J. Reporting of irradiance modeling relative prediction errors. Prog. Photovolt. 2013, 21, 1514–1519. [Google Scholar] [CrossRef]
Type | Capacity | Maximum | Average | Total | Data Size | Efficiency |
---|---|---|---|---|---|---|
Wind | 34.5 MW | 16.9 MW | 5.4 MW | 47,443.9 MW | 8784 | |
Solar | 34.5 MW | 19.65 MW | 4.5 MW | 39,136.3 MW | 8784 | 17% |
Hybrid | 69 MW | 32.1 MW | 9.9 MW | 86,580.2 MW | 8784 |
Parameters | 1/year | 1/day | 2/day | ||||
---|---|---|---|---|---|---|---|
Frequency | |||||||
Variance Explained | 3.78 | 2.49 | 66.92 | 0.97 | 0.14 | 10.38 | 0.01 |
Parameters | 1/year | 2/year | 1/day | 2/day | ||||
---|---|---|---|---|---|---|---|---|
Frequency | ||||||||
Variance Explained | 4.10 | 0.21 | 0.41 | 1.74 | 1.02 | 0.01 | 0.06 | 0.06 |
Parameters | 1/year | 2/year | 1/day | 2/day | |||||
---|---|---|---|---|---|---|---|---|---|
Frequency | |||||||||
Variance Explained | 0.07 | 0.24 | 0.83 | 38.59 | 0.27 | 0.08 | 7.33 | 0.07 |
Error Analysis | Solar α > 10° | Wind | Hybrid |
---|---|---|---|
MeAPE | 0.1322 | 0.1655 | 0.1085 |
MBE | 0.0369 | −0.0893 | 0.0002 |
NRMSE | 0.1977 | 0.2382 | 0.1716 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Boland, J. Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales. Energies 2018, 11, 1119. https://doi.org/10.3390/en11051119
Huang J, Boland J. Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales. Energies. 2018; 11(5):1119. https://doi.org/10.3390/en11051119
Chicago/Turabian StyleHuang, Jing, and John Boland. 2018. "Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales" Energies 11, no. 5: 1119. https://doi.org/10.3390/en11051119
APA StyleHuang, J., & Boland, J. (2018). Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales. Energies, 11(5), 1119. https://doi.org/10.3390/en11051119