Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method
Abstract
:1. Introduction
2. Methods and Backgrounds
2.1. Basic Concept of NMM
2.1.1. Cover System
2.1.2. Contact Theory
2.2. Thermal Conduction of Granular Materials
2.2.1. Representation of the Micro Structure of Granular Materials
2.2.2. Basic Formulas
- The first law of thermodynamics
- Fourier’s law
- Boundary conditions
- Initial conditions
2.2.3. Contact Based Heat Transfer Model
2.2.4. Discretization and Solution
2.3. Thermo-Elastic Fracture Analysis
2.3.1. Thermo-Mechanical Coupling
2.3.2. A Damage Based Contact Fracture Model
3. Results and Discussion
3.1. Validation of Contact Heat Transfer Model
3.2. Validation of Thermo-Mechanical Coupling
3.3. Thermo-Elastic Fracturing Induced by Elevated Temperature
3.4. Thermo-Elastic Fracturing Induced by Cooling
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ghassemi, A. A review of some rock mechanics issues in geothermal reservoir development. Geotech. Geol. Eng. 2012, 30, 647–664. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Viete, D.R.; Chen, B.J.; Perera, M.S.A. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng. Geol. 2012, 151, 120–127. [Google Scholar]
- Yang, S.-Q.; Tian, W.-L.; Ranjith, P.G. Failure mechanical behavior of Australian Strathbogie granite at high temperatures: Insights from Particle Flow Modeling. Energies 2017, 10, 756. [Google Scholar] [CrossRef]
- Peng, J.; Wong, L.N.Y.; Teh, C.I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J. Geophys. Res. Sol. Ea 2017, 122, 1054–1073. [Google Scholar] [CrossRef]
- Yang, S.Q.; Huang, Y.H.; Tian, W.L.; Zhu, J.B. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng. Geol. 2017, 217, 35–48. [Google Scholar] [CrossRef]
- Peng, J.; Rong, G.; Cai, M.; Yao, M.; Zhou, C. Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression. Int. J. Rock Mech. Min. 2016, 83, 135–139. [Google Scholar] [CrossRef]
- He, J.; Liu, Q.S.; Wu, Z.J.; Xu, X.Y. Modelling transient heat conduction of granular materials by numerical manifold method. Eng. Anal. Bound. Elem. 2018, 86, 45–55. [Google Scholar] [CrossRef]
- Burlayenko, V.N.; Altenbach, H.; Sadowski, T.; Dimitrova, S.D. Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Comp. Mater. Sci. 2016, 116, 11–21. [Google Scholar] [CrossRef]
- Yvonnet, J.; He, Q.C.; Zhu, Q.Z.; Shao, J.F. A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput. Mater. Sci. 2011, 50, 1220–1224. [Google Scholar] [CrossRef]
- Singh, A.; Singh, I.V.; Prakash, R. Meshless element free Galerkin method for unsteady nonlinear heat transfer problems. Int. J. Heat Mass Tranf. 2007, 50, 1212–1219. [Google Scholar] [CrossRef]
- Gao, X.-W.; Zheng, B.-J.; Yang, K.; Zhang, C. Radial integration BEM for dynamic coupled thermoelastic analysis under thermal shock loading. Comput. Struct. 2015, 158, 140–147. [Google Scholar] [CrossRef]
- Tang, S.B.; Tang, C.A.; Liang, Z.Z.; Zhang, Y.F. Influence of heterogeneity on strength and failure characterization of cement-based composite subjected to uniform thermal loading. Constr. Build. Mater. 2011, 25, 3382–3392. [Google Scholar] [CrossRef]
- Wanne, T.S.; Young, R.P. Bonded-particle modeling of thermally fractured granite. Int. J. Rock Mech. Min. 2008, 45, 789–799. [Google Scholar] [CrossRef]
- Xia, M. An upscale theory of thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static system. Eng. Comput. 2015, 32, 2136–2165. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Zhang, X.L.; Zhang, H.Q.; Li, H.B.; Yang, S.Q.; Li, J.C. A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses. Comput. Geotech. 2015, 67, 142–149. [Google Scholar] [CrossRef]
- Lan, H.X.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Zhao, Z. Thermal influence on mechanical properties of granite: A microcracking perspective. Rock Mech. Rock Eng. 2015, 49, 747–762. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Andersson, J.C. Evolution of in situ rock mass damage induced by mechanical–thermal loading. Rock Mech. Rock Eng. 2012, 46, 153–168. [Google Scholar] [CrossRef]
- Shi, G.H. Manifold Method of Material Analysis. In Transactions of the 9th Army Conference on Applied Mathematics and Computing; Report No. 92-1; Army Research Office: Minneapolis, MN, USA, 1991; pp. 57–76. [Google Scholar]
- An, X.M.; Zhao, Z.Y.; Zhang, H.H.; Li, L.X. Investigation of linear dependence problem of three-dimensional partition of unity-based finite element methods. Comput. Meth. Appl. Mech. Eng. 2012, 233–236, 137–151. [Google Scholar] [CrossRef]
- Fan, L.F.; Yi, X.W.; Ma, G.W. Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock mass. Int. J. Appl. Mech. 2013, 5, 1350022. [Google Scholar] [CrossRef]
- He, J.; Liu, Q.S.; Ma, G.W.; Zeng, B. An improved numerical manifold method incorporating hybrid crack element for crack propagation simulation. Int. J. Fract. 2016, 199, 21–38. [Google Scholar] [CrossRef]
- Li, S.C.; Cheng, Y.M. Enriched meshless manifold method for two-dimensional crack modeling. Theor. Appl. Fract. Mech. 2005, 44, 234–248. [Google Scholar] [CrossRef]
- Liu, G.Y.; Zhuang, X.Y.; Cui, Z.Q. Three-dimensional slope stability analysis using independent cover based numerical manifold and vector method. Eng. Geol. 2017, 225, 83–95. [Google Scholar] [CrossRef]
- Terada, K.; Ishii, T.; Kyoya, T.; Kishino, Y. Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures. Comput. Mech. 2005, 39, 191–210. [Google Scholar] [CrossRef]
- Tsay, R.J.; Chiou, Y.J.; Chuang, W.L. Crack growth prediction by manifold method. J. Eng. Mech. 1999, 125, 884–890. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Chen, G.Q.; Jiang, Z.S.; Zhang, L.; Zhang, H.; Fan, F.S.; Han, Z.; Zou, Z.Y.; Chang, L.; Li, L.Y. Research on fault cutting algorithm of the three-dimensional numerical manifold method. Int. J. Geomech. 2017, 17, E4016003. [Google Scholar] [CrossRef]
- Wu, Z.J.; Wong, L.N.Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput. Geotech. 2012, 39, 38–53. [Google Scholar] [CrossRef]
- Yang, Y.T.; Zheng, H. Direct approach to treatment of contact in numerical manifold method. Int. J. Geomech. 2017, 17. [Google Scholar] [CrossRef]
- Zhang, G.X.; Sugiura, Y.; Hasegawa, H. Crack propagation by manifold and boundary element method. In Proceeding of the 3rd International Conference on Analysis of Discontinuous Deformation, Vail, CO, USA, 3–4 June 1999; pp. 273–282. [Google Scholar]
- Zhao, G.F.; Zhao, X.B.; Zhu, J.B. Application of the numerical manifold method for stress wave propagation across rock masses. Int. J. Numer. Anal. Methods 2014, 38, 92–110. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, F.; Du, X.L. Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method. Comput. Meth. Appl. Mech. Eng. 2015, 295, 150–171. [Google Scholar] [CrossRef]
- Ning, Y.J.; An, X.M.; Ma, G.W. Footwall slope stability analysis with the numerical manifold method. Int. J. Rock Mech. Min. 2011, 48, 964–975. [Google Scholar] [CrossRef]
- Wu, Z.J.; Fan, L.F.; Liu, Q.S.; Ma, G.W. Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method. Eng. Geol. 2017, 225, 49–60. [Google Scholar] [CrossRef]
- Yang, Y.T.; Zheng, H.; Sivaselvan, M.V. A rigorous and unified mass lumping scheme for higher-order elements. Comput. Meth. Appl. Mech. Eng. 2017, 319, 491–514. [Google Scholar] [CrossRef]
- Xu, D.D.; Yang, Y.T.; Zheng, H.; Wu, A.Q. A high order local approximation free from linear dependency with quadrilateral mesh as mathematical cover and applications to linear elastic fractures. Comput. Struct. 2017, 178, 1–16. [Google Scholar] [CrossRef]
- Zheng, H.; Xu, D.D. New strategies for some issues of numerical manifold method in simulation of crack propagation. Int. J. Numer. Meth. Eng. 2014, 97, 986–1010. [Google Scholar] [CrossRef]
- Zhang, H.H.; Ma, G.W.; Fan, L.F. Thermal shock analysis of 2D cracked solids using the numerical manifold method and precise time integration. Eng. Anal. Bound. Elem. 2017, 75, 46–56. [Google Scholar] [CrossRef]
- Zhang, H.H.; Ma, G.W.; Ren, F. Implementation of the numerical manifold method for thermo-mechanical fracture of planar solids. Eng. Anal. Bound. Elem. 2014, 44, 45–54. [Google Scholar] [CrossRef]
- Norouzi, S.; Baghbanan, A.; Khani, A. Investigation of grain size effects on micro/macro-mechanical properties of intact rock using Voronoi element discrete element method approach. Particul. Sci. Technol. 2013, 31, 507–514. [Google Scholar] [CrossRef]
- Lin, J.S. A mesh-based partition of unity method for discontinuity modeling. Comput. Meth. Appl. Mech. Eng. 2003, 192, 1515–1532. [Google Scholar] [CrossRef]
- Wang, D.S.; Du, Q. Mesh optimization based on the centroidal Voronoi tessellation. Int. J. Numer. Anal. Mod. 2005, 2, 100–113. [Google Scholar]
- Wriggers, P.; Miehe, C. Contact constraints within coupled thermomechanical analysis—A finite-element model. Comput. Meth. Appl. Mech. Eng. 1994, 113, 301–319. [Google Scholar] [CrossRef]
- Oancea, V.G.; Laursen, T.A. A finite element formulation of thermomechanical rate-dependent frictional sliding. Int. J. Numer. Meth. Eng. 1997, 40, 4275–4311. [Google Scholar] [CrossRef]
- Eslami, M.R. A First Course in Finite Element Analysis; Tehran Publication Press: Tehran, Iran, 2003. [Google Scholar]
- Liu, Q.S.; Jiang, Y.L.; Wu, Z.J.; Xu, X.Y.; Liu, Q. Investigation of the rock fragmentation process by a single TBM cutter using a Voronoi element-based numerical manifold method. Rock Mech. Rock Eng. 2018, 51, 1137–1152. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J. Theory of Elasticity; McGraw-Hill book Company: New York, NY, USA, 1951. [Google Scholar]
- Yan, C.Z.; Zheng, H. A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int. J. Rock Mech. Min. 2017, 91, 170–178. [Google Scholar] [CrossRef]
- Abdalla, H. Concrete cover requirements for FRP reinforced members in hot climates. Compos. Struct. 2006, 73, 61–69. [Google Scholar] [CrossRef]
- Huang, H.; Meakin, P.; Malthe-Sorenssen, A. Physics-based simulation of multiple interacting crack growth in brittle rocks driven by thermal cooling. Int. J. Numer Anal. Methods 2016, 40, 2163–2177. [Google Scholar] [CrossRef]
Parameters | Material 1 | Material 2 |
---|---|---|
Material | ||
Bulk density, () | 2300 | 2300 |
Elastic modulus, E (GPa) | 20 | 40 |
Poisson’s ratio, μ | 0.3 | 0.3 |
Thermal expansion, α [48] | 1 × 10−6 | 1.5 × 10−6 |
Interface | ||
Contact thermal conductivity, () | 1 × 108 | |
Initial temperature, | 0 | |
Normal contact stiffness, | 1 × 107 | |
Tangential contact stiffness, | 4 × 106 | |
Cohesion, | 10 | |
Tensile strength, | 5 | |
Friction angle, | 0 | |
Mode I energy release rate, | 40 | |
Mode II energy release rate, | 200 |
Parameters | |
---|---|
Material | |
Bulk density, () | 2500 |
Elastic modulus, E (GPa) | 30 |
Poisson’s ratio, μ | 0.3 |
Thermal conductivity, () | 3 |
Specific heat, () | 1000 |
Thermal expansion, α | 5 × 10−6 |
Interface | |
Contact thermal conductivity, () | 1 × 105 |
Initial temperature, | 1000 |
Normal contact stiffness, | 1 × 107 |
Tangential contact stiffness, | 4 × 106 |
Cohesion, | 30 |
Tensile strength, | 10 |
Friction angle, | 0 |
Mode I energy release rate, | 50 |
Mode II energy release rate, | 200 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Liu, Q.; Wu, Z.; Jiang, Y. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method. Energies 2018, 11, 1380. https://doi.org/10.3390/en11061380
He J, Liu Q, Wu Z, Jiang Y. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method. Energies. 2018; 11(6):1380. https://doi.org/10.3390/en11061380
Chicago/Turabian StyleHe, Jun, Quansheng Liu, Zhijun Wu, and Yalong Jiang. 2018. "Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method" Energies 11, no. 6: 1380. https://doi.org/10.3390/en11061380
APA StyleHe, J., Liu, Q., Wu, Z., & Jiang, Y. (2018). Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method. Energies, 11(6), 1380. https://doi.org/10.3390/en11061380