Thermal Characterization of a Heat Management Module Containing Microencapsulated Phase Change Material
Abstract
:1. Introduction
2. Materials and Method
2.1. Test Module
2.1.1. The mPCM Capsule Employed
2.1.2. Hot Wall with Constant Temperature TH
2.1.3. Cold Wall with Constant Temperature Tc
2.2. Measurements in the Experiment
2.3. Experimental Procedure
2.4. Experiment Data
2.5. Experimental Uncertainty
3. Results and Discussion
3.1. The Melting Process
3.2. The Heat Dissipation Process in the Module
4. Conclusions
- The thermal protection period of the test module decreases rapidly as the Stefan number increases; however, increasing the subcooling factor can effectively enhance the thermal protection performance.
- When the cold-wall temperature TC is fixed at 27 °C, at TH = 47, 57, and 67 °C (Stefan number = 0.2, 0.4, and 0.6, respectively), the effective thermal-protection periods are 90, 47, and 32 min. When the cold-wall temperature TC is fixed at 17 °C, the effective thermal-protection periods are infinitely large, 90 min, and 56 min.
- The cold-wall temperature has an effect on the time required for the PCM of the test module to completely solidify. When the cold wall temperature TC is 27 °C, and the initial hot-wall temperature is between 47–67 °C, the heat dissipation of the test module is completed 280 min after stopping the heating. When the cold-wall temperature TC is 17 °C, the heat dissipation of the test module is completed 140 min after stopping the heating.
Author Contributions
Funding
Conflicts of Interest
References
- Errebai, F.B.; Chikh, S.; Derradji, L. Experimental and numerical investigation for improving the thermal performance of a microencapsulated phase change material plasterboard. Energy Convers. Manag. 2018, 174, 309–321. [Google Scholar] [CrossRef]
- Figueiredo, A.; Vicente, R.; Lapa, J.; Cardoso, C.; Rodrigues, F.; Kämpf, J. Indoor thermal comfort assessment using different constructive solutions incorporating PCM. Appl. Energy 2017, 208, 1208–1221. [Google Scholar] [CrossRef]
- Kim, T.; Hyun, B.-S.; Lee, J.-J.; Rhee, J. Numerical study of the spacecraft thermal control hardware combining solid–liquid phase change material and a heat pipe. Aerosp. Sci. Technol. 2013, 27, 10–16. [Google Scholar] [CrossRef]
- Huang, Y.H.; Cheng, W.L.; Zhao, R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Convers. Manag. 2019, 182, 9–20. [Google Scholar] [CrossRef]
- Shaid, A.; Wang, L.; Padhye, R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 2016, 45, 611–625. [Google Scholar] [CrossRef]
- Ho, C.J.; Hsu, H.Y.; Tu, F.-J.; Lai, C. Numerical simulation of the heat transfer characteristics of a U-shaped thermosyphon containing a PCM suspension. Appl. Therm. Eng. 2016, 108, 1076–1085. [Google Scholar] [CrossRef]
- Ho, C.J.; Wang, W.J.; Lai, C.-M. Dynamic response of a thermally activated paraffin actuator. Int. J. Heat Mass Transf. 2016, 103, 894–899. [Google Scholar] [CrossRef]
- Kalnæs, S.E.; Jelle, B.P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy Build. 2015, 94, 150–176. [Google Scholar] [CrossRef] [Green Version]
- Salunkhe, P.; Shembekar, P. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 2012, 16, 5603–5616. [Google Scholar] [CrossRef]
- Schossig, P.; Henning, H.; Gschwander, S.; Haussmann, T. Micro-encapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells 2005, 89, 297–306. [Google Scholar] [CrossRef]
- Lai, C.; Hokoi, S. Thermal performance of an aluminum honeycomb wallboard incorporating microencapsulated PCM. Energy Build. 2014, 73, 37–47. [Google Scholar] [CrossRef]
- Milián, Y.E.; Gutierrez, A.; Grágeda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew. Sustain. Energy Rev. 2017, 73, 983–999. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Liu, L.; Fang, G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Build. 2017, 144, 276–294. [Google Scholar] [CrossRef]
- Yataganbaba, A.; Ozkahraman, B.; Kurtbas, I. Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015). Appl. Energy 2017, 185, 720–731. [Google Scholar] [CrossRef]
- Chandel, S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2016, 67, 581–596. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, C.; Lin, Y.; Fang, G. Thermal properties and applications of MPCM for thermal energy storage: A review. Appl. Therm. Eng. 2019, 147, 841–855. [Google Scholar] [CrossRef]
- Giro-Paloma, J.; Alkan, C.; Chimenos, J.; Fernández, A. Comparison of microencapsulated phase change materials prepared at laboratory containing the same core and different shell material. Appl. Sci. 2017, 7, 723. [Google Scholar] [CrossRef]
- Hasse, C.; Grenet, M.; Bontemps, A.; Dendievel, R.; Sallée, H. Realization, test and modelling of honeycomb wallboards containing a phase change material. Energy Build. 2011, 43, 232–238. [Google Scholar] [CrossRef]
- Mahmoud, S.; Tang, A.; Toh, C.; Al-Dadah, R.; Soo, S.L. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Appl. Energy 2013, 112, 1349–1356. [Google Scholar] [CrossRef]
- Zhu, Z.-Q.; Huang, Y.-K.; Hu, N.; Zeng, Y.; Fan, L.-W. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio. Appl. Therm. Eng. 2018, 128, 966–972. [Google Scholar] [CrossRef]
- Khattak, Z.; Ali, H. Air cooled heat sink geometries subjected to forced flow: a critical review. Int. J. Heat Mass Transf. 2019, 130, 141–161. [Google Scholar] [CrossRef]
- Wang, S.-M.; Matiasovsky, P.; Mihalka, P.; Lai, C.-M. Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard. Energy Build. 2017, 159, 419–425. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, H.M.; Lin, Y.-P.; Lin, L.P.; Lai, C.-M. Thermal Characterization of a Heat Management Module Containing Microencapsulated Phase Change Material. Energies 2019, 12, 2164. https://doi.org/10.3390/en12112164
Shih HM, Lin Y-P, Lin LP, Lai C-M. Thermal Characterization of a Heat Management Module Containing Microencapsulated Phase Change Material. Energies. 2019; 12(11):2164. https://doi.org/10.3390/en12112164
Chicago/Turabian StyleShih, H.M., Yi-Pin Lin, L.P. Lin, and Chi-Ming Lai. 2019. "Thermal Characterization of a Heat Management Module Containing Microencapsulated Phase Change Material" Energies 12, no. 11: 2164. https://doi.org/10.3390/en12112164
APA StyleShih, H. M., Lin, Y. -P., Lin, L. P., & Lai, C. -M. (2019). Thermal Characterization of a Heat Management Module Containing Microencapsulated Phase Change Material. Energies, 12(11), 2164. https://doi.org/10.3390/en12112164