Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium
Abstract
:1. Introduction
2. Methodology
2.1. Life Cycle Assessment (LCA)
2.1.1. Goal Definition
- Metal-contaminated soils benefit from biochar application thanks to its capacity to immobilize the heavy metals;
- Non-contaminated soils benefit from biochar application thanks to its capacity to better retain nutrients and water, especially within the context of climate change.
- i.
- Pig manure, which is abundantly available and needs to be processed anyhow to avoid a local oversupply of nutrients. Moreover, the processing of pig manure in three steps seems to result in a positive business case [32]. First, the pig manure is separated in water (44%), a thick fraction (17.5%), and a thin fraction (38.5%). The nutrients nitrogen (N) and potassium (K) end up in the thin fraction or concentrate, whereas phosphorus (P) is concentrated in the thick fraction. Second, the thick fraction is dried to a dry matter content of 95%. Third, the dried thick fraction is pyrolyzed for the production of biochar and energy. In full operation, it is expected that 60,000 tons of wet thick fraction can be processed annually;
- ii.
- Willow can be cultivated on marginal soils that remain largely unused for agricultural production as they are not fertile and might even be contaminated with heavy metals. Hence, willow can be cultivated in short rotation to either produce energy and biochar from marginal, non-contaminated soils or to extract the cadmium from 2400 ha [33] of contaminated soil to produce energy and “activated” biochar.
- Case 1: production and application of biochar from willow cultivated on non-contaminated marginal soils;
- Case 2: production and application of biochar from the dried thick fraction of pig manure.
2.2.2. Life Cycle Inventory (LCI)
2.2.3. Impact Assessment
Monetizing Environmental Impacts
2.2.4. Uncertainty Analysis
3. Results and Discussion
3.1. Interpretation of LCA Midpoints
3.1.1. Land Occupation
3.1.2. Global Warming
3.1.3. Non-Renewable Energy
3.1.4. Terrestrial Ecotoxicity
3.2. Interpretation of LCA Endpoints
3.3. Interpretation of the Monetized Value of the Environmental Impacts
3.4. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Input | Process | Project |
---|---|---|
Willow woodchip | Wood chips and particles, willow {RoW}| willow production, short rotation coppice | Alloc Def, U | Ecoinvent 3 |
Transport willow woodchip to pyrolysis plant | Transport, freight, lorry >32 metric ton, EURO6 {GLO}| market for | Alloc Def, U | Ecoinvent 3 |
Heat | Heat, district or industrial, natural gas {Europe without Switzerland}| heat production, natural gas, at boiler modulating >100 kW | Alloc Def, U | Ecoinvent 3 |
Transport Willow biochar to field | Transport, freight, lorry 16–32 metric ton, EURO6 {GLO}| market for | Alloc Def, U | Ecoinvent 3 |
Natural gas | Natural Gas Mix, technology mix, consumption mix, at consumer, onshore and offshore production incl. pipeline and LNG transport EU-27 S | ELCD |
Electricity | Electricity, medium voltage {BE}| market for | Alloc Def, U | Ecoinvent 3 |
N fertilizer | Nitrogen fertilizer, production mix, at plant/US | USLCI |
K fertilizer | Potassium chloride (NPK 0-0-60), at plant/RER Economic | Agri-footprint |
P fertilizer | Phosphorous fertilizer, production mix, at plant/US | USLCI |
Transport pig manure to pyrolysis plant | Transport, freight, lorry >32 metric ton, EURO6 {GLO}| market for | Alloc Def, U | Ecoinvent 3 |
Transport pig manure biochar to field | Transport, freight, lorry 16–32 metric ton, EURO6 {GLO}| market for | Alloc Def, U | Ecoinvent 3 |
Impact Category | Willow Woodchips | Transport | Pyrolysis Plant | Biochar Application | Natural Gas Avoided | Electricity Avoided | Total |
---|---|---|---|---|---|---|---|
Ecovalue08 | |||||||
Abiotic resources | 0.99 € | 0.10 € | 1.13 € | 0.03 € | −8.82 € | −0.53 € | −7.09 € |
Global warming | 51.14 € | 2.98 € | 32.66 € | −504.73 € | −45.31 € | −17.36 € | -480.62 € |
Ozone depletion | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Human toxicity | 148.76 € | 7.31 € | 10.89 € | 2.10 € | −2.44 € | −30.25 € | 136.36 € |
Photochemical oxidation | 0.28 € | 0.01 € | 0.06 € | 0 | −0.47 € | −0.06 € | −0.18 € |
Acidification | 4.85 € | 0.12 € | 1.00 € | −0.11 € | −2.08 € | −0.67 € | 3.11 € |
Eutrophication | 69.40 € | 0.18 € | 1.52 € | −0.83 € | −0.80 € | −1.83 € | 67.65 € |
Net balance | 275.41 € | 10.71 € | 47.27 € | −503.54 € | −59.91 € | −50.71 € | −280.77€ |
Stepwise2006 | |||||||
Abiotic resources | 8.42 € | 0.89 € | 9.65 € | 0.28 € | −75.05 € | −4.50 € | −60.32 € |
Global warming | 17.79 € | 1.04 € | 11.36 € | −175.56 € | −15.76 € | −6.04 € | −167.17 € |
Ozone depletion | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Human toxicity | 0.16 € | 0.01 € | 0.01 € | 0 | 0 | −0.03 € | 0.15 € |
Photochemical oxidation | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Acidification | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Eutrophication | 3.29 € | 0.01 € | 0.07 € | −0.04 € | −0.04 € | −0.09 € | 3.20 € |
Net balance | 29.65 € | 1.94 € | 21.10 € | −175.32 € | −90.85 € | −10.66 € | −224.14€ |
Ecotax02 | |||||||
Abiotic resources | 42.08 € | 4.44 € | 48.27 € | 1.38 € | −375.24 € | −22.50 € | −301.59 € |
Global warming | 15.56 € | 0.91 € | 9.94 € | −153.61 € | −13.79 € | −5.28 € | −146.28 € |
Ozone depletion | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Human toxicity | 18.06 € | 0.89 € | 1.32 € | 0.25 € | −0.30 € | −3.67 € | 16.56 € |
Photochemical oxidation | 3.34 € | 0.12 € | 0.76 € | −0.03 € | −5.60 € | −0.71 € | −2.14 € |
Acidification | 2.91 € | 0.07 € | 0.60 € | −0.07 € | −1.24 € | −0.40 € | 1.86 € |
Eutrophication | 9.09 € | 0.02 € | 0.20 € | −0.11 € | −0.10 € | −0.24 € | 8.86 € |
Net balance | 91.04 € | 6.44 € | 61.09 € | −152.19 € | −396.28 € | −32.82 € | −422.72 € |
Impact Category | Pig Manure Pretreatment | Transport | Pyrolysis Plant | Biochar Application | Natural Gas Avoided | Total |
---|---|---|---|---|---|---|
Ecovalue08 | ||||||
Abiotic resources | 2.31 € | 0.08 € | 2.23 € | 0.02 € | −3.66 € | 0.99 € |
Global warming | 70.35 € | 2.34 € | 65.24 € | −226.44 € | −18.80 € | −107.31 € |
Ozone depletion | 0 | 0 | 0 | 0 | 0 | 0 |
Human toxicity | 66.25 € | 5.73 € | 25.06 € | 1.45 € | −1.01 € | 97.49 € |
Photochemical oxidation | 0.18 € | 0.01 € | 0.12 € | 0 | −0.19 € | 0.11 € |
Acidification | 1.91 € | 0.10 € | 1.30 € | −0.13 € | −0.86 € | 2.32 € |
Eutrophication | 4.30 € | 0.14 € | 2.07 € | −0.86 € | −0.33 € | 5.32 € |
Net balance | 145.31 € | 8.40 € | 96.03 € | −225.97 € | −24.86 € | −1.08€ |
Stepwise2006 | ||||||
Abiotic resources | 19.70 € | 0.70 € | 19.01 € | 0.15 € | −31.14 € | 8.42 € |
Global warming | 24.47 € | 0.81 € | 22.69 € | −78.76 € | −6.54 € | −37.33 € |
Ozone depletion | 0.01 € | 0 | 0 | 0 | 0 | 0.01 € |
Human toxicity | 0.07 € | 0.01 € | 0.03 € | 0 | 0 | 0.11 € |
Photochemical oxidation | 0 | 0 | 0 | 0 | 0 | 0 |
Acidification | 0 | 0 | 0 | 0 | 0 | 0 |
Eutrophication | 0.20 € | 0.01 € | 0.10 € | -0.04 € | -0.02 € | 0.25 € |
Net balance | 44.45 € | 1.52 € | 41.84 € | −78.65 € | −37.70 € | −28.53€ |
Ecotax02 | ||||||
Abiotic resources | 98.50 € | 3.48 € | 95.07 € | 0.77 € | −155.71 € | 42.11 € |
Global warming | 21.41 € | 0.71 € | 19.86 € | −68.92 € | −5.72 € | −32.66 € |
Ozone depletion | 0.01 € | 0 | 0.01 € | 0 | 0 | 0.02 € |
Human toxicity | 8.05 € | 0.70 € | 3.04 € | 0.18 € | −0.12 € | 11.84 € |
Photochemical oxidation | 2.13 € | 0.09 € | 1.46 € | −0.05 € | −2.32 € | 1.30 € |
Acidification | 1.15 € | 0.06 € | 0.78 € | −0.08 € | −0.52 € | 1.39 € |
Eutrophication | 0.56 € | 0.02 € | 0.27 € | −0.11 € | −0.04 € | 0.70 € |
Net balance | 131.81 € | 5.06 € | 120.48 € | −68.21 € | −164.44 € | 24.69€ |
References
- Gaunt, J.L.; Lehmann, J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 2008, 42, 4152–4158. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction, 1st ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abington, UK, 2009; ISBN 9781844076581. [Google Scholar]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Review of Effects on Soil Properties, Processes and Functions; European Commission: Brussel, Belgium, 2010; ISBN 9789279142932. [Google Scholar]
- Kauffman, N.; Dumortier, J.; Hayes, D.J.; Brown, R.C.; Laird, D.A. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy 2014, 63, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Houben, D.; Evrard, L.; Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 2013, 57, 196–204. [Google Scholar] [CrossRef]
- Hilioti, Z.; Michailof, C.M.; Valasiadis, D.; Iliopoulou, E.F.; Koidou, V.; Lappas, A.A. Characterization of castor plant-derived biochars and their effects as soil amendments on seedlings. Biomass Bioenergy 2017, 105, 96–106. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.L.; Kristiansen, P.; Cacho, O.; Lan, T.; Mai, A. Biochar can improve the sustainable use of rice residues in rice production systems. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 8–13 April 2018; Volume 20, p. 2652. [Google Scholar]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: Abington, UK, 2015. [Google Scholar]
- Sahoo, K.; Bilek, E.; Bergman, R.; Mani, S. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Appl. Energy 2019, 235, 578–590. [Google Scholar] [CrossRef]
- Jaroenkhasemmeesuk, C.; Tippayawong, N. Technical and Economic Analysis of A Biomass Pyrolysis Plant. Energy Procedia 2015, 79, 950–955. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.R.; Wright, M.M.; Brown, R.C. Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod. Biorefining 2011, 5, 54–68. [Google Scholar] [CrossRef]
- Kuppens, T.; Van Dael, M.; Vanreppelen, K.; Thewys, T.; Yperman, J.; Carleer, R.; Schreurs, S.; Van Passel, S. Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J. Clean. Prod. 2015, 88, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada. Ecosystems 2016, 3, 1–10. [Google Scholar] [CrossRef]
- Huang, Y.; Anderson, M.; McIlveen-Wright, D.; Lyons, G.A.; McRoberts, W.C.; Wang, Y.D.; Roskilly, A.P.; Hewitt, N.J. Biochar and renewable energy generation from poultry litter waste: A technical and economic analysis based on computational simulations. Appl. Energy 2015, 160, 656–663. [Google Scholar] [CrossRef]
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Shackley, S.; Sohi, S.; Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 2011, 39, 2646–2655. [Google Scholar] [CrossRef]
- Ibarrola, R.; Shackley, S.; Hammond, J. Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. Waste Manag. 2012, 32, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Harsono, S.S.; Grundman, P.; Lau, L.H.; Hansen, A.; Salleh, M.A.M.; Meyer-Aurich, A.; Idris, A.; Ghazi, T.I.M. Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resour. Conserv. Recycl. 2013, 77, 108–115. [Google Scholar] [CrossRef]
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario, Canada. J. For. Res. 2015, 26, 799–809. [Google Scholar] [CrossRef]
- Muñoz, E.; Curaqueo, G.; Cea, M.; Vera, L.; Navia, R. Environmental hotspots in the life cycle of a biochar-soil system. J. Clean. Prod. 2017, 158, 1–7. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Pelletier, F.; Raghavan, V.; Palacios, J.H. Pyrolysis of switchgrass in an auger reactor for biochar production: A greenhouse gas and energy impacts assessment. Biomass Bioenergy 2018, 116, 99–105. [Google Scholar] [CrossRef]
- Frazier, R.S.; Jin, E.; Kumar, A. Life cycle assessment of biochar versus metal catalysts used in syngas cleaning. Energies 2015, 8, 621–644. [Google Scholar] [CrossRef]
- Huppes, G.; Van Oers, L. Background Review of Existing Weighting Approaches in Life Cycle Impact Assessment (LCIA); European Union: Luxembourg, 2011. [Google Scholar]
- Weidema, B.; Brandão, M.; Pizzol, M. The Use of Monetary Valuation of Environmental Impacts in Life Cycle Assessment: State of the Art, Strengths and Weaknesses; 2.-0 LCA Consultant: Aalborg, Denmark, 2013; Volume 33. [Google Scholar]
- Itsubo, N.; Sakagami, M.; Kuriyama, K.; Inaba, A. Statistical analysis for the development of national average weighting factors-visualization of the variability between each individual’s environmental thought. Int. J. Life Cycle Assess. 2012, 17, 488–498. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Chen, Y. Study of the environmental impacts based on the “green tax”—Applied to several types of building materials. Build. Environ. 2005, 40, 227–237. [Google Scholar] [CrossRef]
- van Harmelen, T.; van Korenromp, R.; Deutekom, C.; Ligthart, T.N.; van Leeuwen, S.; van Gijlswijk, R. The Price of Toxicity. Methodology for the Assessment of Shadow Prices for Human Toxicity, Ecotoxicity and Abiotic Depletion; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Johnsen, F.M.; Løkke, S. Review of criteria for evaluating LCA weighting methods. Int. J. Life Cycle Assess. 2013, 18, 840–849. [Google Scholar] [CrossRef]
- Finnveden, G. A Critical Review of Operational Valuation/Weighting Methods for Life Cycle Assessment; Swedish Environmental Protection Agency: Stockholm, Swedish, 1999. [Google Scholar]
- International Organization for Standardization. Environmental Management-Life Cycle Assessment-Principles and Framework; ISO: Geneva, Switzerland, 1947. [Google Scholar]
- Kuppens, T.; Maggen, J.; Carleer, R.; Yperman, J.; Van Dael, M.; Van Passel, S. Valorisatie van Varkensmest Door Pyrolyse—Cleantech Business Case in Limburg; University of Hasselt: Hasselt, Belgium, 2014. [Google Scholar]
- Kuppens, T.; Rafiaani, P.; Vanreppelen, K.; Yperman, J.; Carleer, R.; Schreurs, S.; Thewys, T.; Van Passel, S. Combining Monte Carlo simulations and experimental design for incorporating risk and uncertainty in investment decisions for cleantech: a fast pyrolysis case study. Clean Technol. Environ. Policy 2018, 20, 1195–1206. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- European Union. PE-CONS 42/15 DGE 1 EB/vm; European Union: Brussels, Belgium, 2015; Volume 2015. [Google Scholar]
- Lee, U.; Balu, E.; Chung, J.N. An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications. Appl. Energy 2013, 101, 699–708. [Google Scholar] [CrossRef]
- Curaqueo, G.; Meier, S.; Khan, N.; Cea, M.C.; Navia, R. Use of biochar on two volcanic soils: effects on soil properties and barley yield. J. Soil Sci. Plant Nutr. 2014, 14, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Kimetu, J.M.; Lehmann, J.; Ngoze, S.O.; Mugendi, D.N.; Kinyangi, J.M.; Riha, S.; Verchot, L.; Recha, J.W.; Pell, A.N. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems 2008, 11, 726–739. [Google Scholar] [CrossRef]
- Zhang, Q.; Dijkstra, F.A.; Liu, X.; Wang, Y.; Huang, J.; Lu, N. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS ONE 2014, 9, e102062. [Google Scholar] [CrossRef]
- Li, B.; Fan, C.H.; Zhang, H.; Chen, Z.Z.; Sun, L.Y.; Xiong, Z.Q. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 2015, 100, 10–19. [Google Scholar] [CrossRef]
- SAC. Scottish Agricultural College Farm Management Handbook; SAC: Penicuik, Scotland, 2016. [Google Scholar]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Li, X.; Zhaojie, C. Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag. 2010, 30, 2362–2369. [Google Scholar] [CrossRef]
- Buratti, C.; Barbanera, M.; Testarmata, F.; Fantozzi, F. Life Cycle Assessment of organic waste management strategies: an Italian case study. J. Clean. Prod. 2014, 1–12. [Google Scholar] [CrossRef]
- Marques, R.C.; da Cruz, N.F.; Ferreira, S.F.; Simões, P.; Pereira, M.C. EIMPack—Economic Impact of the Packaging and Packaging Waste Directive-Environmental Valuation (Literature Review); Instituto Superior Técnico: Lisbon, Portugal, 2013. [Google Scholar]
- Thi, T.L.N.; Laratte, B.; Guillaume, B.; Hua, A. Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models. Resour. Conserv. Recycl. 2016, 109, 13–23. [Google Scholar]
- Finnveden, G.; Eldh, P.; Johansson, J. Weighting in LCA based on ecotaxes: Development of a mid-point method and experiences from case studies. Int. J. Life Cycle Assess. 2006, 11, 81–88. [Google Scholar]
- Ahlorth, S.; Finnveden, G. Ecovalue08—A new valuation set for environmental systems analysis tools. J. Clean. Prod. 2011, 19, 1994–2003. [Google Scholar] [CrossRef]
- Weidema, B.P. Using the budget constraint to monetarise impact assessment results. Ecol. Econ. 2009, 68, 1591–1598. [Google Scholar] [CrossRef]
- Eurostat 2016 Inflation Rate. Annual Average Rate of Change 2016. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tec00118&plugin=1 (accessed on 5 June 2019).
- Pizzol, M.; Weidema, B.; Brandão, M.; Osset, P. Monetary valuation in Life Cycle Assessment: A review. J. Clean. Prod. 2015, 86, 170–179. [Google Scholar] [CrossRef]
- ISO. 14044 Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Igos, E.; Benetto, E.; Meyer, R.; Baustert, P.; Othoniel, B. How to treat uncertainties in life cycle assessment studies? Int. J. Life Cycle Assess. 2018, 24, 794–807. [Google Scholar] [CrossRef]
- Batouli, M.; Bienvenu, M.; Mostafavi, A. Putting sustainability theory into roadway design practice: Implementation of LCA and LCCA analysis for pavement type selection in real world decision making. Transp. Res. Part D Transp. Environ. 2017, 52, 289–302. [Google Scholar] [CrossRef]
- Guo, M.; Murphy, R.J. LCA data quality: Sensitivity and uncertainty analysis. Sci. Total Environ. 2012, 435–436, 230–243. [Google Scholar] [CrossRef]
Inputs | Outputs | ||
---|---|---|---|
Energy and transport | Products | ||
Willow woodchips | 3.73 ton | Biochar | 1 ton |
Transport feedstock to pyrolysis plant | 149.2 tkm | Avoided products | |
Heat (pyrolysis) | 1.92 GJ | Natural gas | 0.37 ton |
Transport biochar to filed | 40 tkm | Electricity | 1.01 GJ |
N fertilizer | 0.66 kg | ||
K fertilizer | 0.13 kg | ||
P fertilizer | 0.1 kg | ||
Emissions | |||
Syngas combustion in CHP | |||
SO2 | 0.015 kg | ||
NOx | 0.2 kg | ||
Biochar application in soil | |||
CO2 avoided | −2.2 ton | ||
N2O avoided | −2.6 kg |
Inputs | Outputs | ||
---|---|---|---|
Energy and transport | Products | ||
Heat (dried and ground pig manure production) | 3.28 GJ | Biochar | 1 ton |
Electricity (dried and ground pig manure production) | 0.7 MWh | Avoided products | |
Transport feedstock to pyrolysis plant | 116 tkm | Natural gas | 0.14 ton |
Heat (pyrolysis) | 3.63 GJ | N fertilizer | 0.66 kg |
Electricity (pyrolysis) | 0.05 MWh | K fertilizer | 0.13 kg |
Transport biochar to field | 40 tkm | P fertilizer | 0.1 kg |
Emissions | |||
Syngas combustion in CHP | |||
SO2 | 0.003 kg | ||
NOx | 0.04 kg | ||
Biochar application in soil | |||
CO2 avoided | −0.98 ton | ||
N2O avoided | −2.6 kg |
LCA Application Euryear | STEPWISE2006 EUR2003 | ECOTAX02 EUR2002 | ECOVALUE08 EUR2010 |
---|---|---|---|
Global warming [eur/kgCO2eq] | 0.08 | 0.07 | 0.23 |
Ozone depletion [eur/kgCFC11eq] | 100 | 139.56 | - |
Acidification [eur/kgSO2eq] | 0.00015 | 2.09 | 3.49 |
Eutrophication [eur/kgPO4eq] | 1.2 | 3.32 | 25.35 |
Photochemical oxidation [eur/kgC2H4eq] | 0.00056 | 55.82 | 4.65 |
Abiotic resources [eur/MJ] | 0.004 | 0.02 | 0.00047 |
Human toxicity [eur/kg1.4DBeq] | 0.00154 | 0.17 | 1.4 |
Impact Category | Units | Case 1 (Willow) | Case 2 (Pig Manure) |
---|---|---|---|
Carcinogens | kg C2H3Cl eq | 4.40 | 10.09 |
Non-carcinogens | kg C2H3Cl eq | 11 | 3.08 |
Respiratory inorganics | kg PM2.5 eq | 0.31 | 0.17 |
Ionizing radiation | Bq C-14 eq | −9500 | 22,392 |
Ozone layer depletion | kg CFC-11 eq | 2.14 × 10−5 | 1.12 × 10−4 |
Respiratory organics | kg C2H4 eq | 0.01 | 0.06 |
Aquatic ecotoxicity | kg TEG water | 31,000 | 23,400 |
Terrestrial ecotoxicity | kg TEG soil | 48,200 | 6654 |
Terrestrial acid/nutri | kg SO2 eq | 6.69 | 2.68 |
Land occupation | m2org.arable | 3693 | 8.84 |
Aquatic acidification | kg SO2 eq | 0.91 | 0.68 |
Aquatic eutrophication | kg PO4 P-lim | 0.58 | −0.005 |
Global warming | kg CO2 eq | −2063 | −472 |
Non-renewable energy | MJ primary | −16,830 | 6100 |
Mineral extraction | MJ surplus | 15.37 | 4.29 |
Damage Category | Unit | Case 1 | Case 2 |
---|---|---|---|
Human health | DALY | −8.68 × 10−8 | 1.65 × 10−7 |
Ecosystem quality | PDF·m2·yr | 2.63 | 0.06 |
Climate change | kg CO2 eq | −2.22 | −0.47 |
Resources | MJ primary | −23.59 | 6.11 |
Total points | µPt | −199.38 | 20.65 |
Impact Category | Unit | Case 1 (Willow) | Case 2 (Pig Manure) |
---|---|---|---|
Global warming (GWP100a) | kg CO2 eq | −2089.65 | −466.56 |
Ozone layer depletion | kg CFC-11 eq | 2.37 × 10−5 | 1 × 10−4 |
Human toxicity | kg 1,4-DB eq | 97.42 | 69.63 |
Abiotic depletion (fossil fuels) | MJ | −15,085.11 | 2106.38 |
Eutrophication | kg PO4 eq | 2.66 | 0.20 |
Photochemical oxidation | kg C2H4 eq | −0.03 | 0.02 |
Acidification | kg SO2 eq | 0.89 | 0.66 |
Impact Category | Case 1 | Case 2 | ||||
---|---|---|---|---|---|---|
Ecovalue08 | Stepwise2006 | Ecotax02 | Ecovalue08 | Stepwise2006 | Ecotax02 | |
Abiotic resources | −7.09 € | −60.32 € | −301.59 € | 0.99 € | 8.42 € | 42.11 € |
Global warming | −480.62 € | −167.17 € | −146.28 € | −107.31 € | −37.33 € | −32.66 € |
Ozone depletion | 0 | 0 | 0 | 0 | 0.01 € | 0.02 € |
Human toxicity | 136.36 € | 0.15 € | 16.56 € | 97.49 € | 0.11 € | 11.84 € |
Photochemical oxidation | −0.18 € | 0 | −2.14 € | 0.11 € | 0 | 1.30 € |
Acidification | 3.11 € | 0 | 1.86 € | 2.32 € | 0 | 1.39 € |
Eutrophication | 67.65 € | 3.20 € | 8.86 € | 5.32 € | 0.25 € | 0.70 € |
Net balance | −280.77€ | −224.14€ | −422.72 € | −1.08€ | −28.53 € | 24.69€ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi Hamedani, S.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium. Energies 2019, 12, 2166. https://doi.org/10.3390/en12112166
Rajabi Hamedani S, Kuppens T, Malina R, Bocci E, Colantoni A, Villarini M. Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium. Energies. 2019; 12(11):2166. https://doi.org/10.3390/en12112166
Chicago/Turabian StyleRajabi Hamedani, Sara, Tom Kuppens, Robert Malina, Enrico Bocci, Andrea Colantoni, and Mauro Villarini. 2019. "Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium" Energies 12, no. 11: 2166. https://doi.org/10.3390/en12112166
APA StyleRajabi Hamedani, S., Kuppens, T., Malina, R., Bocci, E., Colantoni, A., & Villarini, M. (2019). Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium. Energies, 12(11), 2166. https://doi.org/10.3390/en12112166