An Efficient Hybrid Model for Nonlinear Two-Phase Flow in Fractured Low-Permeability Reservoir
Abstract
:1. Introduction
2. Mimetic Finite Difference Method
3. Hybrid Model for Two-Phase Flow in Fractured Media
3.1. Discrete Fracture Model
3.2. Flow Governing Equations
3.3. Description of Nonlinear Fluid Flow
3.4. Calculation of Wellbore Pressure Drop
3.5. Hybrid Mathematical Model
4. Numerical Discretization and Solution
4.1. Numerical Discretization
4.2. Solution of Pressure and Saturation
5. Results and Analysis
5.1. Effect of Fracture Length
5.2. Effect of Fracture Spacing
6. Case Study
7. Conclusions
- (1)
- Using a discrete fracture model to reduce the dimension of the fracture network explicitly, the two-parameter model is used to represent the nonlinear flow behavior of multiphase fluid in porous media, and the equivalent percolation model of pipe flow is selected to calculate the wellbore pressure drop in a horizontal wellbore. A novel hybrid mathematical model for nonlinear two-phase flow in a fractured low-permeability waterflood reservoir is developed by combining the governing equations satisfied by the matrix, fracture and horizontal wellbore, respectively. By combing the MFD method and FV method, the numerical discretization of the hybrid model is derived and validated using a synthetic staggered five-spot flood system. The effect of fracture properties on nonlinear flow behaviors in fractured low-permeability reservoir are ultimately investigated.
- (2)
- The results show that with an increase of fracture length near injectors, injected water will cross into the horizontal wellbore more easily, resulting in a faster increase of water cut, and a worse development effect. The effect of shortening fracture spacing is consistent with that of increasing fracture length. When performing the optimization design of fracture parameters, it is necessary to shorten the length of fractures nearby injectors and enlarge the fracture spacing of end regions to avoid too early a breakthrough of injected water. Successful practice in modeling the complex waterflood behaviors for a 3-D heterogeneous reservoir provides powerful evidence for the practicability and reliability of our model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, G.; Sheng, M.; Tian, S.; Huang, Z.; Li, Y.; Yuan, X. Multistage hydraulic jet acid fracturing technique for horizontal wells. Pet. Explor. Dev. 2012, 39, 100–104. [Google Scholar] [CrossRef]
- Liu, R.; Li, B.; Jiang, Y.; Yu, L. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks. Adv. Water Resour. 2018, 111, 289–300. [Google Scholar] [CrossRef]
- Deng, Y.E.; Liu, C.Q. Mathematical model of nonlinear flow in low permeability porous media and its application. Acta Pet. Sin. 2001, 22, 72–77. [Google Scholar]
- Li, S.Q.; Cheng, L.S.; Li, X.S.; Hao, F. Nonlinear seepage flow models of ultra-low permeability reservoirs. Pet. Explor. Dev. 2008, 35, 606–612. [Google Scholar] [CrossRef]
- Yu, R.; Bian, Y.; Li, Y.; Zhang, X.; Yan, J.; Wang, H.; Wang, K. Non-Darcy flow numerical simulation of XPL low permeability reservoir. J. Pet. Sci. Eng. 2012, 92–93, 40–47. [Google Scholar]
- Shu, W.B.; Xu, H.H.; Wan, J.Y. Numerical research on dynamic effect of capillary pressure in low permeability reservoirs. Chin. J. Hydrodyn. 2014, 29, 189–196. [Google Scholar]
- Liu, W.; Yao, J.; Chen, Z.; Zhu, W. An exact analytical solution of moving boundary problem of radial fluid flow in an infinite low-permeability reservoir with threshold pressure gradient. J. Pet. Sci. Eng. 2019, 175, 9–21. [Google Scholar] [CrossRef]
- Shahraeeni, E.; Moortgat, J.; Firoozabadi, A. High-resolution finite element methods for 3D simulation of compositionally triggered instabilities in porous media. Comput. Geosci. 2015, 19, 899–920. [Google Scholar] [CrossRef]
- Cordero, J.A.R.; Sanchez, E.C.M.; Roehl, D.; Rueda, J.; Mejia, E. Integrated discrete fracture and dual porosity—Dual permeability models for fluid flow in deformable fractured media. J. Pet. Sci. Eng. 2019, 175, 644–653. [Google Scholar] [CrossRef]
- Abbasi, M.; Madani, M.; Sharifi, M.; Kazemi, A. Fluid flow in fractured reservoirs: Exact analytical solution for transient dual porosity model with variable rock matrix block size. J. Pet. Sci. Eng. 2018, 164, 571–583. [Google Scholar] [CrossRef]
- Noorishad, J.; Mehran, M. An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 1982, 18, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Fard, M.; Firoozabadi, A. Numerical simulation of water injection in fractured media using discrete-fracture model and the Galerkin method. SPE Reserv. Eval. Eng. 2003, 6, 117–126. [Google Scholar] [CrossRef]
- Hoteit, H.; Firoozabadi, A. An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 2008, 31, 891–905. [Google Scholar] [CrossRef]
- Hauge, V.L.; Aarnes, J.E. Modeling of two-phase flow in fractured porous media on unstructured non-uniformly coarsened grids. Transp. Porous Media 2009, 77, 373–398. [Google Scholar] [CrossRef]
- Zhang, N.; Yao, J.; Huang, Z.; Wang, Y. Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model. J. Comput. Phys. 2013, 242, 420–438. [Google Scholar] [CrossRef]
- Zhou, F.Q.; Shi, A.F.; Wang, X.H. An efficient finite difference model for multiphase flow in fractured reservoirs. Pet. Explor. Dev. 2014, 41, 262–266. [Google Scholar] [CrossRef]
- Khoei, A.R.; Hosseini, N.; Mohammadnejad, T. Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model. Adv. Water Resour. 2016, 94, 510–528. [Google Scholar] [CrossRef]
- Hosseinimehr, M.; Cusini, M.; Vuik, C.; Hajibeygi, H. Algebraic dynamic multilevel method for embedded discrete fracture model (F-ADM). J. Comput. Phys. 2018, 373, 324–345. [Google Scholar] [CrossRef] [Green Version]
- Baca, R.G.; Arnett, R.C.; Langford, D.W. Modeling fluid flow in fractured-porous rock masses by finite element techniques. Int. J. Numer. Methods Fluids 1984, 4, 337–348. [Google Scholar] [CrossRef]
- Zidane, A.; Firoozabadi, A. An efficient numerical model for multicomponent compressible flow in fractured porous media. Adv. Water Resour. 2014, 74, 127–147. [Google Scholar] [CrossRef]
- Stefansson, I.; Berre, I.; Keilegavlen, E. Finite-volume discretizations for flow in fractured porous media. Transp. Porous Media 2018, 124, 439–462. [Google Scholar] [CrossRef]
- Jiang, L.; Moulton, J.D.; Svyatskiy, D. Analysis of stochastic mimetic finite difference methods and their applications in single-phase stochastic flows. Comput. Methods Appl. Mech. Eng. 2012, 217–220, 58–76. [Google Scholar] [CrossRef]
- Huang, Z.; Yan, X.; Yao, J. A two-phase flow simulation of discrete fractured media using mimetic finite difference method. Commun. Comput. Phys. 2014, 16, 799–816. [Google Scholar] [CrossRef]
- Yan, X.; Huang, Z.; Yao, J.; Li, Y.; Fan, D.; Sun, H.; Zhang, K. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs. SPE J. 2018, 23, 1412–1437. [Google Scholar] [CrossRef]
- Yan, X.; Huang, Z.; Yao, J.; Li, Y.; Fan, D. An efficient embedded discrete fracture model based on mimetic finite difference method. J. Pet. Sci. Eng. 2016, 145, 11–21. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Z.; Yao, J.; Wang, Y.; Li, Y. Multiscale mimetic method for two-phase flow in fractured media using embedded discrete fracture model. Adv. Water Resour. 2017, 107, 180–190. [Google Scholar] [CrossRef]
- Jing, P.; Omar, A.H.; Mary, F.W. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter. Comput. Geosci. 2017, 21, 781–794. [Google Scholar]
- Gyrya, V.; Lipnikov, K. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor. J Comput. Phys. 2017, 348, 549–566. [Google Scholar] [CrossRef]
- Dikken, B.J. Pressure drop in horizontal wells and its effect on their production performance. J. Pet. Technol. 1990, 42, 1426–1433. [Google Scholar] [CrossRef]
- Jansen, J.D. A semi-analytical model for calculating pressure drop along horizontal wells with stinger completions. SPE J. 2003, 8, 138–146. [Google Scholar] [CrossRef]
- Yao, S.; Zeng, F.; Liu, H.; Zhao, G. A semi-analytical model for multi-stage fractured horizontal wells. J. Hydrol. 2013, 507, 201–212. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, X.; Zhao, X.; Zhu, L.; Liu, H. Performance of multiple fractured horizontal wells with consideration of pressure drop within wellbore. J. Pet. Sci. Eng. 2016, 146, 677–693. [Google Scholar] [CrossRef]
- Li, H.; Tan, Y.; Jiang, B.; Wang, Y.; Zhang, N. A semi-analytical model for predicting inflow profile of horizontal wells in bottom-water gas reservoir. J. Pet. Sci. Eng. 2018, 160, 351–362. [Google Scholar] [CrossRef]
- Vodorezov, D.D. Estimation of horizontal-well productivity loss caused by formation damage on the basis of numerical modeling and laboratory-test data. SPE J. 2019, 24, 44–59. [Google Scholar] [CrossRef]
- Wu, S.H.; Liu, X.E.; Guo, S.P. A simplified model of flow in horizontal wellbore. Pet. Explor. Dev. 1999, 26, 64–66. [Google Scholar]
- Birchenko, V.M.; Usnich, A.V.; Davies, D.R. Impact of frictional pressure losses along the completion on well performance. J. Pet. Sci. Eng. 2010, 73, 204–213. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Zeng, Q.; Wei, J. A unified model of oil/water two-phase flow in the horizontal wellbore. SPE J. 2017, 22, 353–364. [Google Scholar] [CrossRef]
- Lipnikov, K.; Manzini, G.; Moulton, J.D.; Shashkov, M. The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. J. Comput. Phys. 2016, 305, 111–126. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Parameter | Value |
---|---|---|---|
reservoir dimensions | 1000 m × 800 m | water viscosity | 1 mPa∙s |
matrix porosity | 0.1 | oil viscosity | 5 mPa∙s |
matrix permeability | 1 × 10−3 μm2 | water density | 1000 kg/m3 |
fracture length | 400 m | oil density | 800 kg/m3 |
fracture spacing | 100 m | inject rate | 0.05 PV/day |
fracture aperture | 1 mm | production rate | 0.05 PV/day |
fracture permeability | 8.33 × 104 μm2 | irreducible water saturation | 0.3 |
length of lateral segment | 900 m | residual oil saturation | 0.1 |
Parameter | Value | Parameter | Value |
---|---|---|---|
matrix porosity | 0.1 | water viscosity | 1.0 mPa∙s |
matrix permeability | 0.1~2.0 mD | oil viscosity | 5.0 mPa∙s |
fracture conductivity | 5.0 | water density | 1000 kg/m3 |
fracture length | 400 m | oil density | 750 kg/m3 |
fracture spacing | 100 m | inject rate | 60 m3/d |
length of lateral segment | 1600 m | BHP pressure | 5.0 MPa |
initial reservoir pressure | 20 MPa | irreducible water saturation | 0.35 |
bubble point pressure | 28 MPa | residual oil saturation | 0.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Sun, J.; Li, Y.; Peng, H. An Efficient Hybrid Model for Nonlinear Two-Phase Flow in Fractured Low-Permeability Reservoir. Energies 2019, 12, 2850. https://doi.org/10.3390/en12152850
Wang D, Sun J, Li Y, Peng H. An Efficient Hybrid Model for Nonlinear Two-Phase Flow in Fractured Low-Permeability Reservoir. Energies. 2019; 12(15):2850. https://doi.org/10.3390/en12152850
Chicago/Turabian StyleWang, Daigang, Jingjing Sun, Yong Li, and Hui Peng. 2019. "An Efficient Hybrid Model for Nonlinear Two-Phase Flow in Fractured Low-Permeability Reservoir" Energies 12, no. 15: 2850. https://doi.org/10.3390/en12152850
APA StyleWang, D., Sun, J., Li, Y., & Peng, H. (2019). An Efficient Hybrid Model for Nonlinear Two-Phase Flow in Fractured Low-Permeability Reservoir. Energies, 12(15), 2850. https://doi.org/10.3390/en12152850