NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.; Besenhard, J.O.; Spahr, M.E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, L.; He, X.; Xiao, R.; Gu, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Duan, X.; Chen, L.; et al. Lithium storage in Li4Ti5O12 Spinel: The full static picture from electron microscopy. Adv. Mater. 2012, 24, 3233–3238. [Google Scholar] [CrossRef] [PubMed]
- Ohzuku, T.; Ueda, A.; Yamamota, N. Zero-strain insertion material of Li [Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431–1435. [Google Scholar] [CrossRef]
- You, Y.; Wu, X.-L.; Yin, Y.-X.; Guo, Y.-G. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J. Mater. Chem. A 2013, 1, 14061–14065. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Taniguchi, K.; Tajima, R.; Nishimura, S.-I.; Hashizume, D.; Yamadac, A.; Takagi, H. A new “zero-strain” material for electrochemical lithium insertion. J. Mater. Chem. A 2013, 1, 6550–6552. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Ohzuku, T.; Kodama, T.; Hirai, T. Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells. J. Power Sources 1985, 14, 153–166. [Google Scholar] [CrossRef]
- Liaw, B.Y.; Raistrick, I.D.; Huggins, R.A. Thermodynamic and structural considerations of insertion reactions in lithium vanadium bronze structures. Solid State Ion. 1991, 45, 323–328. [Google Scholar] [CrossRef]
- Ku, J.H.; Jung, Y.S.; Lee, K.T.; Kim, C.H.; Oh, S.M. Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries. J. Electrochem. Soc. 2009, 156, A688–A693. [Google Scholar] [CrossRef]
- Li, H.; Balaya, P.; Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 2004, 151, A1878–A1885. [Google Scholar] [CrossRef]
- Wei, M.; Wei, K.; Ichihara, M.; Zhou, H. Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 2008, 10, 980–983. [Google Scholar] [CrossRef]
- Jian, Z.; Lu, X.; Fang, Z.; Hu, Y.-S.; Zhou, J.; Chen, W.; Chen, L. LiNb3O8 as a novel anode material for lithium-ion batteries. Electrochem. Commun. 2011, 13, 1127–1130. [Google Scholar] [CrossRef]
- Nowak, I.; Ziolek, M. Niobium compounds: Preparation, characterization, and application in heterogeneous catalysis. Chem. Rev. 1999, 99, 3603–3624. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Jeong, S.-K.; Kim, Y.-S. Electrochemical properties of chemically etched-NbO2 as a negative electrode material for lithium ion batteries. Adv. Mater. Res. 2015, 1120, 115–118. [Google Scholar] [CrossRef]
- Park, H.; Lee, D.; Song, T. High capacity monoclinic Nb2O5 and semiconducting NbO2 composite as high-power anode material for Li-Ion batteries. J. Power Sources 2019, 414, 377–382. [Google Scholar] [CrossRef]
- Nico, C.; Monteiro, T.; Graça, M.P.F. Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci. 2016, 80, 1–37. [Google Scholar] [CrossRef]
- Koudriachova, M.V.; Harrison, N.M.; de Leeuw, S.W. Diffusion of Li-ions in rutile. An ab initio study. Solid State Ion. 2003, 157, 35–38. [Google Scholar] [CrossRef]
- Shin, H.C.; Park, S.B.; Jang, H.; Chung, K.Y.; Cho, W.I.; Kim, C.S.; Cho, B.W. Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim. Acta 2008, 53, 7946–7951. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, Z.; Deng, Y.; Zheng, J.; Liu, G.; Chen, G. Hollow Fe3O4/C spheres as superior lithium storage materials. J. Power Sources 2012, 197, 305–309. [Google Scholar] [CrossRef]
- Ku, J.W.; Park, K.; Ryu, J.H.; Oh, S.M. Electrochemical characteristics of Li3V2(PO4)3 negative electrode as a function of crystallinity. J. Korean Electrochem. Soc. 2012, 15, 27–34. [Google Scholar] [CrossRef]
- Adler, D. Mechanisms for metal-nonmental transitions in transition-metal oxides and sulfides. Rev. Mod. Phys. 1968, 40, 714–736. [Google Scholar] [CrossRef]
- Chang, C.-M.; Chen, Y.-C.; Ma, W.-L.; Chen-Yang, Y.W. High rate capabilities of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) anode materials prepared by a sol–gel method for use in power lithium ion batteries. RSC Adv. 2015, 5, 49248–49256. [Google Scholar] [CrossRef]
State | a = b (Å) | c (Å) | Volume (Å3) |
---|---|---|---|
Pristine | 13.7412 | 6.0037 | 1133.6 |
First full charge | 13.7528 | 6.0019 | 1135.2 |
First full discharge | 13.7413 | 6.0039 | 1133.7 |
Second full charge | 13.7526 | 6.0020 | 1135.2 |
Second full discharge | 13.7413 | 6.0040 | 1133.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Cho, Y.; Nogales, P.M.; Jeong, S.-K. NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution. Energies 2019, 12, 2960. https://doi.org/10.3390/en12152960
Kim Y-S, Cho Y, Nogales PM, Jeong S-K. NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution. Energies. 2019; 12(15):2960. https://doi.org/10.3390/en12152960
Chicago/Turabian StyleKim, Yang-Soo, Yonghoon Cho, Paul M. Nogales, and Soon-Ki Jeong. 2019. "NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution" Energies 12, no. 15: 2960. https://doi.org/10.3390/en12152960
APA StyleKim, Y. -S., Cho, Y., Nogales, P. M., & Jeong, S. -K. (2019). NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution. Energies, 12(15), 2960. https://doi.org/10.3390/en12152960