Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Culturing
2.2. Materials and Characterization
2.3. Thermal Analyses
2.4. Non-Isothermal Kinetic Analysis
3. Results and Discussion
3.1. Materials Characterization
3.2. Thermal Analysis
3.3. Non-Isothermal Kinetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Energy Resources; World Energy Council: London, UK, 2016; Available online: https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources_SummaryReport_2016.pdf (accessed on 5 July 2019).
- Assis, T.C.D.; Calijuri, M.L.; Assemany, P.P.; Pereira, A.S.A.D.P.; Martins, M.A. Using atmospheric emissions as CO2 source in the cultivation of microalgae: Productivity and economic viability. J. Clean. Prod. 2019, 215, 1160–1169. [Google Scholar] [CrossRef]
- Shuba, E.S.; Kifle, D. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renew. Sustain. Energy Rev. 2018, 81, 743–755. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Huang, M.Y.; Chang, J.S. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresour. Technol. 2015, 184, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36–57. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.G.; Dosoky, N.S.; Zoromba, M.S.; Shafik, H.M. Algal Biofuels: Current Status and Key Challenges. Energies 2019, 12, 1920. [Google Scholar] [CrossRef]
- SundarRajan, P.; Gopinath, K.P.; Greetham, D.; Antonysamy, A.J. A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. J. Clean. Prod. 2019, 210, 445–458. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K. Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci. Total Environ. 2017, 584–585, 1121–1129. [Google Scholar] [CrossRef]
- Delrue, F.; Álvarez-Díaz, P.D.; Fon-Sing, S.; Fleury, G.; Sassi, J.-F. The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies 2016, 9, 132. [Google Scholar] [CrossRef]
- Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; deLasa, H. Biological CO2 fixation with production of microalgae in wastewater—A review. Renew. Sustain. Energy Rev. 2017, 76, 379–390. [Google Scholar] [CrossRef]
- Jais, N.M.; Mohamed, R.M.S.R.; Al-Gheethi, A.A.; Hashim, M.K.A. The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol. Environ. Policy 2017, 19, 37–52. [Google Scholar] [CrossRef]
- Escapa, C.; Coimbra, R.N.; Paniagua, S.; Garcia, A.I.; Otero, M. Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. J Appl. Phycol. 2017, 29, 1179–1193. [Google Scholar] [CrossRef]
- Escapa, C.; Torres, T.; Neuparth, T.; Coimbra, R.N.; García, A.I.; Santos, M.M.; Otero, M. Zebrafish embryo bioassays for a comprehensive evaluation of microalgae efficiency in the removal of diclofenac from water. Sci. Total Environ. 2018, 640–641, 1024–1033. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Escapa, C.; Vázquez, N.C.; Noriega-Hevia, G.; Otero, M. Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water 2018, 10, 1401. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Church, J.; Lee, S.-J.; Park, J.; Lee, W.H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 2016, 33, 882–897. [Google Scholar] [CrossRef]
- López-González, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanchez-Silva, L. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Appl. Energy 2014, 114, 227–237. [Google Scholar] [CrossRef]
- Lane, D.; Ashman, P.J.; Zevenhoven, M.; Hupa, M.; van Eyk, P.; de Nys, R.; Karlströ, O.; Lewis, D.M. Combustion behavior of algal biomass: carbon release, nitrogen release, and char reactivity. Energy Fuels 2014, 28, 41–51. [Google Scholar] [CrossRef]
- Gai, C.; Liu, Z.; Han, G.; Peng, N.; Fan, A. Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis. Bioresour. Technol. 2015, 181, 148–154. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Aguado, R.; Pablos, A.; Amutio, M.; Olazar, M.; Bilbao, J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 2015, 140, 744–751. [Google Scholar] [CrossRef]
- Otero, M.; Calvo, L.F.; Gil, M.V.; García, A.I.; Morán, A. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 2008, 99, 6311–6319. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Paniagua, S.; Escapa, C.; Calvo, L.F.; Otero, M. Combustion of primary and secondary pulp mill sludge and their respective blends with coal: A thermogravimetric assessment. Renew. Energy 2015, 83, 1050–1058. [Google Scholar] [CrossRef]
- Chen, G.-B.; Chatelier, S.; Lin, H.-T.; Wu, F.-H.; Lin, T.-H. A Study of Sewage Sludge Co-Combustion with Australian Black Coal and Shiitake Substrate. Energies 2018, 11, 3436. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Paniagua, S.; Escapa, C.; Calvo, L.F.; Otero, M. Thermal valorization of pulp mill sludge by co-processing with coal. Waste Biomass Valoriz. 2016, 7, 995–1006. [Google Scholar] [CrossRef]
- Escapa, C.; Coimbra, R.N.; Paniagua, S.; García, A.I.; Otero, M. Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Res. 2016, 18, 127–134. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ansari, F.A.; Shriwastav, A.; Sahoo, N.K.; Rawat, I.; Bux, F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016, 115, 255–264. [Google Scholar] [CrossRef]
- Mann, J.E.; Myers, J. On pigments growth and photosynthesis of Phaeodactylum tricornutum. J. Phycol. 1968, 4, 349–355. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Test No. 303: Simulation Test—Aerobic Sewage Treatment—A: Activated Sludge Units; B: Biofilms. In OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 2001. [Google Scholar] [CrossRef]
- ASTM D3172-13. Standard Practice for Proximate Analysis of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM D3173-11. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM D3174-12. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM D3175-18. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM D5373-08. Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM D4239-14. Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- UNE-EN 14918. Solid Biofuels—Determination of Calorific Value; Spanish Association for Standardization and Certification: Madrid, Spain, 2011. [Google Scholar]
- Selvig, W.A.; Gibson, I.H. Calorific value of coal. In Chemistry of Coal Utilization; Lowry, H.H., Ed.; Wiley: Hoboken, NJ, USA, 1945; Volume 1, p. 139. [Google Scholar]
- Tillman, D.A. Wood as an Energy Resource; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Abe, F. The thermochemical study of forest biomass. Bull. For. For. Prod. Res. Inst. 1988, 352, 1–95. [Google Scholar]
- Demirbas, A.; Gullu, D.; Caglar, A.; Akdeniz, F. Estimation of calorific values of fuels from lignocellulosics. Energy Sources 1997, 19, 765–770. [Google Scholar] [CrossRef]
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Ebeling, J.M. Thermochemical properties of biomass fuels. Calif. Agric. 1985, 39, 14–16. [Google Scholar]
- Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Majumder, A.K.; Jain, R.; Banerjee, P.; Barnwal, J.P. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 2008, 87, 3077–3081. [Google Scholar] [CrossRef]
- Grabosky, M.; Bain, R. Properties of biomass relevant to gasification; Noyes Data Corporation: Park Ridge, NJ, USA, 1981. [Google Scholar]
- Bridgwater, A.V.; Double, J.M.; Earp, D.M. Technical and market assessment of biomass gasification in the United Kingdom. In ETSU Report; UKAEA: Harwell, UK, 1986. [Google Scholar]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Sajdak, M.; Muzyka, R.; Hrabak, J.; Rózycki, G. Biomass, biochar and hard coal: Data mining application to elemental composition and high heating values prediction. J. Anal. Appl. Pyrol. 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C.A. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int. Rev. Phys. Chem. 1998, 17, 407–433. [Google Scholar] [CrossRef]
- Zhao, M.; Raheem, A.; Memon, Z.M.; Vuppaladadiyam, A.K.; Ji, G. Iso-conversional kinetics of low-lipid micro-algae gasification by air. J. Clean. Prod. 2019, 207, 618–629. [Google Scholar] [CrossRef]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 1962, 6, 639–642. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Akahira, T.; Sunose, T. Joint convention of four electrical institutes. Research Report (Chiba Institute of Technology). Sci. Technol. 1971, 16, 22–31. [Google Scholar]
- Tsai, M.Y.; Wu, K.T.; Huang, C.C.; Lee, H.T. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler. Waste Manag. 2002, 22, 439–442. [Google Scholar] [CrossRef]
- Gao, Y.; Tahmasebi, A.; Dou, J.; Yu, J. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite. Bioresour. Technol. 2016, 207, 276–284. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Z.; Ma, X.; Long, J.; Peng, Y.; Hu, L.; Lu, Q. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresour. Technol. 2013, 144, 563–571. [Google Scholar] [CrossRef]
- Zakariah, N.A.; Rahman, N.A.; Him, N.R.N. Effects of nitrogen supplementation in replete condition on the biomass yield and microalgae properties of Chlorella sorokiniana. ARPN J. Eng. Appl. Sci. 2017, 12, 3290–3298. [Google Scholar]
- Paniagua, S.; Calvo, L.F.; Escapa, C.; Coimbra, R.N.; Otero, M.; García, A.I. Chlorella sorokiniana thermogravimetric analysis and combustion characteristic indexes estimation. J. Therm. Anal. Calorim. 2018, 131, 3139–3149. [Google Scholar] [CrossRef]
- Babich, I.V.; Hulst, M.V.D.; Lefferts, L.; Moulijn, J.A.; O’Connor, P.; Seshan, K. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 2011, 35, 3199–3207. [Google Scholar] [CrossRef]
- Xu, L.; Wim Brilman, D.W.F.; Withag, J.A.M.; Brem, G.; Kersten, S. Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour. Technol. 2011, 102, 5113–5122. [Google Scholar] [CrossRef]
- Wang, K.; Brown, R.C.; Homsy, S.; Martinez, L.; Sidhu, S.S. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour. Technol. 2013, 127, 494–499. [Google Scholar] [CrossRef]
- Kebelmann, K.; Hornung, A.; Karsten, U.; Griffiths, G. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 2013, 49, 38–48. [Google Scholar] [CrossRef]
- Zou, S.; Wu, Y.; Yang, M.; Li, C.; Tong, J. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour. Technol. 2010, 101, 359–365. [Google Scholar]
- Chen, W.H.; Huang, M.Y.; Chang, J.S.; Chen, C.Y. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour. Technol. 2014, 169, 258–264. [Google Scholar] [CrossRef]
- Jena, U.; Das, K.C. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 2011, 25, 5472–5482. [Google Scholar] [CrossRef]
- Wu, K.T.; Tsai, C.J.; Chen, C.S.; Chen, H.W. The characteristics of torrefied microalgae. Appl. Energy 2012, 100, 52–57. [Google Scholar] [CrossRef]
- Chen, W.H.; Wu, Z.Y.; Chang, J.S. Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2014, 155, 245–251. [Google Scholar] [CrossRef]
- Bui, H.-H.; Tran, K.-Q.; Chen, W.-H. Pyrolysis of microalgae residues—A Kinetic study. Bioresour. Technol. 2015, 199, 362–366. [Google Scholar] [CrossRef]
- Chen, C.; Ma, X.; Liu, K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl. Energy 2011, 88, 3189–3196. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Goos, E.; García-Hernando, N.; Riedel, U. Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the Distributed Activation Energy Model. Algal Res. 2018, 32, 11–29. [Google Scholar] [CrossRef] [Green Version]
- López, R.; Fernández, C.; Gómez, X.; Martínez, O.; Sánchez, M.E. Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion. J. Therm. Anal. Calorim. 2013, 114, 295–305. [Google Scholar] [CrossRef]
- Chen, C.; Ma, X.; He, Y. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour. Technol. 2012, 117, 264–273. [Google Scholar] [CrossRef]
- Chen, C.; Chan, Q.N.; Medwell, P.R.; Heng Yeoh, G. Co-combustion characteristics and kinetics of microalgae Chlorella vulgaris and coal through TGA. Combust. Sci. Technol. in press. [CrossRef]
- Guo, F.H.; Zhong, Z.P. Optimization of the co-combustion of coal and composite biomass pellets. J. Clean. Prod. 2018, 185, 399–407. [Google Scholar] [CrossRef]
- Ondro, T.; Vitázek, I.; Húlan, T.; Lawson, M.K.; Csáki, Š. Non-isothermal kinetic analysis of the thermal decomposition of spruce wood in air atmosphere. Res. Agric. Eng. 2018, 64, 41–46. [Google Scholar] [Green Version]
- Zhao, Z.; Liu, P.; Wang, S.; Ma, S.; Cao, J. Combustion characteristics and kinetics of five tropic algal strains using thermogravimetric analysis. J. Therm. Anal. Calorim. 2018, 131, 1919–1931. [Google Scholar] [CrossRef]
- Giostri, A.; Binotti, M.; Macchi, E. Microalgae cofiring in coal power plants: Innovative system layout and energy analysis. Renew. Energy 2016, 95, 449–464. [Google Scholar] [CrossRef]
No. | Reference | CORRELATION | Originally Targeted Fuel |
---|---|---|---|
Based on Elemental Analysis | |||
1 | Dulong [35] | Biomass of any type and/or origin | |
2 | Tillman [36] | Biomass | |
3 | Abe [37] | Biomass from florestal origin | |
4 | Demirbas et al. [38] | Lignocellulosic fuels | |
5 | Sheng and Azevedo [39] | Biomass | |
6 | Yin [40] | Lignocellulosic fuels (agricultural by-products and wood) | |
Based on Proximate Analysis | |||
7 | Jenkins and Ebeling [41] | Biomass of any type and/or origin | |
8 | Parikh et al. [42] | Solid fuels | |
9 | Sheng and Azevedo [39] | Biomass | |
10 | Majumder et al. [43] | Coal | |
11 | Yin [40] | Lignocellulosic fuels (agricultural by-products and wood) | |
Based on both Elemental and Proximate Analysis | |||
12 | Grabosky and Bain [44] | Biomass | |
13 | IGT [45] | Coal | |
14 | Channiwala and Parikh [46] | Solid, liquid and gaseous fuels | |
15 | Sajdak et al. [47] | Biomass, biochar and coal |
Properties | MB | BC |
---|---|---|
Proximate Analysis (wt. %) | ||
Moisture | 10.1 | 0.8 |
Volatiles (d.b.) | 78.2 | 8.2 |
Ashes (d.b.) | 6.2 | 31.1 |
FC* (d.b.) | 15.6 | 60.7 |
Elemental Analysis (wt. %, d.b.) | ||
C | 52.0 | 62.7 |
H | 6.8 | 2.5 |
N | 10.7 | 1.3 |
S | 0.6 | 0.7 |
O* | 29.8 | 1.7 |
Calorific Analysis (MJ/kg, d.b.) | ||
HHV | 22.9 | 24.3 |
Chlorella | Chlorella vulgaris | Chlorella vulgaris | Chlorella vulgaris | Chlorella vulgaris | Chlorella vulgaris residue | Chlamydomonas reinhardtii | Chlamydomonas reinhardtii | Dunaliella tertiolecta | Nannocloropsis oceanica | Nannocloropsis oceanica residue | Spirulina platensis | Spirulina platensis | Scenedesmus obliquus | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
References | Babich et al. [60] | Xu et al. [61] | Xu et al. [61] | Wang et al. [62] | Kebelmann et al. [63] | Wang et al. [62] | Kebelmann et al. [63] | Kebelmann et al. [63] | Zou et al. [64] | Chen et al. [65] | Chen et al. [65] | Jena and Das [66] | Wu et al. [67] | Chen et al. [68] |
Elemental Analysis (wt. %, d.b.) | ||||||||||||||
C | 50.2 | 45.8 | 53.8 | 42.51 | 43.9 | 45.04 | 52 | 50.2 | 39 | 50.06 | 45.24 | 46.16 | 45.7 | 37.37 |
H | 7.3 | 5.6 | 7.72 | 6.77 | 6.2 | 6.88 | 7.4 | 7.3 | 5.37 | 7.46 | 6.55 | 7.14 | 7.71 | 5.8 |
N | 9.3 | 4.6 | 1.1 | 6.64 | 6.7 | 9.79 | 10.7 | 11.1 | 1.99 | 7.54 | 11.07 | 10.56 | 11.26 | 6.82 |
S | - | - | - | - | - | - | - | - | 0.62 | 0.47 | 0.56 | 0.74 | 0.75 | - |
O | 33.2 | 38.7 | 37 | 27.95 | 43.3 | 29.42 | 29.8 | 31.4 | 53.2 | 34.47 | 36.58 | 35.44 | 25.69 | 50.02 |
Calorific Analysis (MJ kg−1, d.b.) | ||||||||||||||
HHV (measured) | 21.2 | 18.4 | 24.0 | 16.8 | 18.0 | 19.4 | 23.0 | 22.0 | 14.2 | 21.5 | 18.2 | 20.5 | 20.5 | 16.1 |
HHV (No. 1) | 21.5 | 16.6 | 22.7 | 19.1 | 16.0 | 19.9 | 22.9 | 21.9 | 11.3 | 21.5 | 18.2 | 19.5 | 22.0 | 12.0 |
HHV (No. 2) | 20.3 | 18.4 | 21.9 | 16.9 | 17.5 | 18.0 | 21.1 | 20.3 | 15.4 | 20.2 | 18.1 | 18.5 | 18.3 | 14.7 |
HHV (No. 3) | 24.2 | 19.8 | 25.7 | 21.4 | 19.6 | 22.3 | 25.4 | 24.4 | 15.8 | 24.3 | 21.2 | 22.5 | 24.1 | 16.1 |
HHV (No. 4) | 22.0 | 17.4 | 23.3 | 19.6 | 16.9 | 20.3 | 23.4 | 22.4 | 12.5 | 22.1 | 18.8 | 20.2 | 22.3 | 13.1 |
HHV (No. 5) | 20.5 | 18.2 | 22.1 | 17.6 | 18.1 | 18.5 | 21.1 | 20.5 | 16.3 | 20.7 | 18.6 | 19.2 | 19.2 | 16.0 |
HHV (No. 6) | 20.8 | 18.1 | 22.2 | 18.1 | 18.1 | 19.0 | 21.4 | 20.8 | 15.9 | 20.9 | 18.7 | 19.5 | 19.8 | 15.8 |
Chlamydomonas | Chlorella sorokiniana | Chlorella sorokiniana | Chlorella vulgaris | Chlorella vulgaris | Isochrysis galbana | Nannochloropsis limnetica | Nannochloropsis gaditana | Phaeodactylum tricornutum | Spirulina platensis | Scenedesmus almeriensis | |
---|---|---|---|---|---|---|---|---|---|---|---|
References | Bui et al. [69] | Bui et al. [69] | Paniagua et al. [59] | Chen et al. [70] | Soria-Verdugo et al. [71] | Soria-Verdugo et al. [71] | Soria-Verdugo et al. [71] | Soria-Verdugo et al. [71] | Soria-Verdugo et al. [71] | Soria-Verdugo et al. [71] | López et al. [72] |
Proximate Analysis (wt. %, d.b., except for moisture (wt. %)) | |||||||||||
Moisture | 3.5 | 3.8 | 9.6 | - | - | - | - | - | - | - | 5.4 |
Volatiles | 75.5 | 73.2 | 76.1 | 55.37 | 76.26 | 86.13 | 84.06 | 81.56 | 62.1 | 81.46 | 73.1 |
Ashes | 5.2 | 7.9 | 7.83 | 10.28 | 13.11 | 8.31 | 10.52 | 9.16 | 25.46 | 6.4 | 20 |
FC | 15.6 | 15.1 | 16.07 | 34.35 | 10.63 | 5.56 | 5.42 | 9.28 | 12.44 | 12.14 | 6.9 |
Elemental Analysis (wt. %, d.b.) | |||||||||||
C | 40.32 | 45.07 | 47.9 | 47.84 | 51.317 | 43.644 | 52.453 | 52.805 | 40.647 | 49.720 | 43.84 |
H | 7.38 | 7.64 | 6.4 | 6.41 | 7.655 | 6.620 | 8.062 | 7.803 | 6.612 | 7.338 | 6.08 |
N | 2.61 | 3.88 | 8.74 | 9.01 | 9.897 | 5.474 | 7.883 | 8.230 | 6.813 | 11.550 | 6.8 |
S | . | . | 0.78 | 1.46 | 0.573 | 0.816 | 0.617 | 0.509 | 1.446 | 0.693 | 0.32 |
O | 44.5 | 35.52 | 36.18 | 25 | 17.448 | 35.136 | 20.464 | 21.493 | 19.023 | 24.299 | 22.96 |
Calorific Analysis (MJ kg−1, d.b.) | |||||||||||
HHV (measured value) | 17.41 | 20.4 | 18.7 | 21.9 | 22.9 | 19.97 | 23.51 | 24.5 | 19.34 | 22.62 | 20.91 |
HHV (No. 1) | 16.3 | 19.9 | 18.9 | 20.9 | 25.3 | 18.0 | 25.7 | 25.2 | 19.9 | 23.0 | 19.5 |
HHV (No. 2) | 16.0 | 18.0 | 19.3 | 19.3 | 20.8 | 17.4 | 21.3 | 21.4 | 16.1 | 20.1 | 17.5 |
HHV (No. 3) | 19.9 | 22.8 | 21.9 | 23.0 | 26.7 | 20.9 | 27.4 | 27.0 | 21.4 | 25.0 | 21.4 |
HHV (No. 4) | 17.2 | 20.5 | 19.6 | 21.3 | 25.4 | 18.6 | 25.9 | 25.5 | 20.1 | 23.4 | 19.8 |
HHV (No. 5) | 17.9 | 19.3 | 19.3 | 18.9 | 20.7 | 18.1 | 21.4 | 21.4 | 16.6 | 20.1 | 17.4 |
HHV (No. 6) | 18.0 | 19.6 | 19.4 | 19.4 | 21.4 | 18.3 | 22.1 | 22.0 | 17.4 | 20.7 | 17.9 |
HHV (No. 7) | 18.8 | 18.2 | 18.0 | 18.9 | 16.4 | 17.0 | 16.5 | 17.1 | 13.8 | 18.0 | 14.5 |
HHV (No. 8) | 17.2 | 16.7 | 17.5 | 20.7 | 15.5 | 15.3 | 14.9 | 15.9 | 13.9 | 16.9 | 13.7 |
HHV (No. 9) | 17.8 | 17.1 | 18.0 | 18.2 | 16.6 | 17.5 | 17.0 | 17.5 | 14.0 | 18.2 | 15.0 |
HHV (No. 10) | 29.8 | 28.8 | 29.4 | 30.0 | 28.5 | 30.1 | 29.3 | 29.9 | 24.1 | 30.9 | 25.3 |
HHV (No. 11) | 18.3 | 17.8 | 18.5 | 19.2 | 17.2 | 17.8 | 17.4 | 17.9 | 15.0 | 18.6 | 15.7 |
HHV (No. 12) | - | - | 24.2 | 24.3 | 27.4 | 23.2 | 28.3 | 27.9 | 23.4 | 26.0 | 23.1 |
HHV (No. 13) | - | - | 21.5 | 22.8 | 26.6 | 20.0 | 26.9 | 26.6 | 20.9 | 25.1 | 20.8 |
HHV (No. 14) | - | - | 20.3 | 21.5 | 24.8 | 19.2 | 25.4 | 25.1 | 19.5 | 23.3 | 19.6 |
HHV (No. 15) | - | - | 18.7 | 19.9 | 22.8 | 18.1 | 23.8 | 23.4 | 18.5 | 21.0 | 18.4 |
B (K/s) | Tv (K) | Tm (K) | Tf (K) | DTGmax (%/s) | |
---|---|---|---|---|---|
MB | 0.1 | 400 | 542 | 1031 | 0.0363 |
0.2 | 410 | 543 | 1040 | 0.0839 | |
0.4 | 433 | 554 | 1100 | 0.1981 | |
0.5 | 440 | 557 | 1120 | 0.2457 | |
BC | 0.1 | 640 | 782 | 874 | 0.0890 |
0.2 | 657 | 820 | 930 | 0.1295 | |
0.4 | 671 | 867 | 1035 | 0.1669 | |
0.5 | 675 | 875 | 1050 | 0.1820 | |
MB-BC | 0.1 | 600 | 781 | 981 | 0.0873 |
0.2 | 631 | 823 | 993 | 0.1281 | |
0.4 | 646 | 870 | 1046 | 0.1645 | |
0.5 | 654 | 885 | 1080 | 0.1844 |
β (K/s) | Ti (K) | Tmax (K) | Te (K) | ΔH (kJ/g) | |
---|---|---|---|---|---|
MB | 0.1 | 450 | 597 | 1000 | 11.62 |
0.2 | 460 | 857 | 1019 | 11.88 | |
0.4 | 470 | 876 | 1100 | 11.76 | |
0.5 | 475 | 879 | 1165 | 11.71 | |
BC | 0.1 | 500 | 782 | 893 | 13.87 |
0.2 | 500 | 820 | 968 | 13.81 | |
0.4 | 500 | 880 | 1042 | 13.96 | |
0.5 | 500 | 959 | 1086 | 13.78 | |
MB-BC | 0.1 | 461 | 782 | 950 | 14.16 |
0.2 | 470 | 825 | 980 | 14.12 | |
0.4 | 475 | 875 | 1046 | 14.15 | |
0.5 | 480 | 964 | 1080 | 14.11 |
α | E (kJ/mol) FWO | R2 | E (kJ/mol) KAS | R2 | |
---|---|---|---|---|---|
MB | 0.1 | 177 | 0.9995 | 177 | 0.9954 |
0.2 | 243 | 0.9978 | 246 | 0.8958 | |
0.3 | 343 | 0.9882 | 351 | 0.9322 | |
0.4 | 171 | 0.9953 | 169 | 0.9587 | |
0.5 | 121 | 0.9864 | 116 | 0.9971 | |
0.6 | 123 | 0.9844 | 117 | 0.9588 | |
197* ± 85 | 196* ± 90 | ||||
BC | 0.1 | 112 | 0.9995 | 105 | 0.9950 |
0.2 | 102 | 0.9978 | 94 | 0.9971 | |
0.3 | 89 | 0.9882 | 80 | 0.9973 | |
0.4 | 86 | 0.9953 | 77 | 0.9926 | |
0.5 | 76 | 0.9864 | 65 | 0.9974 | |
0.6 | 67 | 0.9844 | 56 | 0.9925 | |
89* ± 16 | 79* ± 18 | ||||
MB-BC | 0.1 | 152 | 0.9995 | 147 | 0.9970 |
0.2 | 118 | 0.9978 | 111 | 0.9661 | |
0.3 | 98 | 0.9882 | 90 | 0.9784 | |
0.4 | 91 | 0.9953 | 82 | 0.9973 | |
0.5 | 80 | 0.9864 | 68 | 0.9896 | |
0.6 | 77 | 0.9844 | 67 | 0.9762 | |
103* ± 28 | 94* ± 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coimbra, R.N.; Escapa, C.; Otero, M. Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend. Energies 2019, 12, 2962. https://doi.org/10.3390/en12152962
Coimbra RN, Escapa C, Otero M. Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend. Energies. 2019; 12(15):2962. https://doi.org/10.3390/en12152962
Chicago/Turabian StyleCoimbra, Ricardo N., Carla Escapa, and Marta Otero. 2019. "Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend" Energies 12, no. 15: 2962. https://doi.org/10.3390/en12152962
APA StyleCoimbra, R. N., Escapa, C., & Otero, M. (2019). Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend. Energies, 12(15), 2962. https://doi.org/10.3390/en12152962