Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tang, C.; Pu, Z.; Liu, Q.; Asiri, A.M.; Luo, Y.; Sun, X. Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. Int. J. Hydrog. Energy 2015, 40, 4727–4732. [Google Scholar] [CrossRef]
- Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 11053. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, H.; Zhang, W.; Wang, M.; Jinping, L.; Wang, X. Nickel phosphide decorated Pt nanocatalyst with enhanced electrocatalytic properties toward common small organic molecule oxidation and hydrogen evolution reaction: A strengthened composite supporting effect. Int. J. Hydrog. Energy 2017, 43, 3203–3215. [Google Scholar] [CrossRef]
- Maheskumar, V.; Gnanaprakasam, P.; Selvaraju, T.; Vidhya, B. Comparative studies on the electrocatalytic hydrogen evolution property of Cu2SnS3 and Cu4SnS4 ternary alloys prepared by solvothermal method. Int. J. Hydrog. Energy 2018, 43, 3967–3975. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 2015, 54, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Myint, M.; Chen, J.G.; Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512. [Google Scholar] [CrossRef]
- Ezaki, H.; Morinaga, M.; Watanabe, S. Hydrogen overpotential for transition metals and alloys, and its interpretation using an electronic model. Electrochim. Acta 1993, 38, 557–564. [Google Scholar] [CrossRef]
- Gong, M.; Wang, D.Y.; Chen, C.C.; Hwang, B.J.; Dai, H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46. [Google Scholar] [CrossRef]
- Abouatallah, R.M.; Kirk, D.W.; Thorpe, S.J.; Graydon, J.W. Reactivation of nickel cathodes by dissolved vanadium species during hydrogen evolution in alkaline media. Electrochim. Acta 2001, 47, 613–621. [Google Scholar] [CrossRef]
- Huot, J.Y.; Brossard, L. Time dependence of the hydrogen discharge at 70 °C on nickel cathodes. Int. J. Hydrog. Energy 1987, 12, 821–830. [Google Scholar] [CrossRef]
- Rommal, H.E.G.; Moran, P.J. Time-Dependent Energy Efficiency Losses at Nickel Cathodes in Alkaline Water Electrolysis Systems. J. Electrochem. Soc. 1985, 132, 325–329. [Google Scholar] [CrossRef]
- Li, M.; Ma, Q.; Zi, W.; Liu, X.; Zhu, X.; Liu, S. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 2015, 1, e1400268. [Google Scholar] [CrossRef]
- Esposito, D.V.; Hunt, S.T.; Stottlemyer, A.L.; Dobson, K.D.; McCandless, B.E.; Birkmire, R.W.; Chen, J.G. Low-Cost Hydrogen-Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates. Angew. Chem. Int. Ed. 2010, 49, 9859–9862. [Google Scholar] [CrossRef]
- Cheng, N.; Stambula, S.; Wang, D.; Banis, M.N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.; Liu, L.M.; et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638. [Google Scholar] [CrossRef]
- Laursen, A.B.; Varela, A.S.; Dionigi, F.; Fanchiu, H.; Miller, C.; Trinhammer, O.L.; Rossmeisl, J.; Dahl, S. Electrochemical hydrogen evolution: Sabatier’s principle and volcano plot. J. Chem. Educ. 2012, 89, 1595–1599. [Google Scholar] [CrossRef]
- Sarkar, S.; Peter, S.C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction Inorg. Chem. Front. 2018, 5, 2060–2080. [Google Scholar]
- Sheng, W.; Gasteiger, H.A.; Shao-Horn, Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536. [Google Scholar] [CrossRef]
- Lu, J.; Xiong, T.; Zhou, W.; Yang, L.; Tang, Z.; Chen, S. Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. ACS Appl. Mater. Interfaces 2016, 8, 5065–5069. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef]
- Van Drunen, J.; Kinkead, B.; Wang, M.C.P.; Sourty, E.; Gates, B.D.; Jerkiewicz, G. Comprehensive Structural, Surface-Chemical and Electrochemical Characterization of Nickel-Based Metallic Foams. ACS Appl. Mater. Interfaces 2013, 5, 6712–6722. [Google Scholar] [CrossRef] [Green Version]
- Mahjoob, S.; Vafai, K. A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf. 2008, 51, 3701–3711. [Google Scholar] [CrossRef]
- Bidault, F.; Brett, D.J.L.; Middleton, P.H.; Abson, N.; Brandon, N.P. A new application for nickel foam in alkaline fuel cells. Int. J. Hydrog. Energy 2009, 34, 6799–6808. [Google Scholar] [CrossRef]
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Milazzo, R.G.; Privitera, S.M.S.; D’Angelo, D.; Scalese, S.; Di Franco, S.; Maita, F.; Lombardo, S. Spontaneous galvanic displacement of Pt nanostructures on nickel foam: Synthesis, characterization and use for hydrogen evolution reaction. Int. J. Hydrog. Energy 2018, 43, 7903–7910. [Google Scholar] [CrossRef]
- Tamasauskaite-Tamasiunaite, L.; Zabielaite, A.; Balciunaite, A.; Sebeka, B.; Stalnioniene, I.; Buzas, V.; Maciulis, L.; Tumonis, L.; Norkus, E. Deposition of Pt Nanoparticles on Ni Foam via Galvanic Displacement. J. Electrochem. Soc. 2017, 164, D53–D56. [Google Scholar] [CrossRef]
- Tamasauskaité–Tamasiunaité, L.; Zabielaité, A.; Balciunaité, A.; Sebeka, B.; Stalnioniené, I.; Buzas, V.; Mačiulis, L.; Tumonis, L.; Norkus, E. Deposition of Pt Nanoparticles on Ni Foam Via Galvanic Displacement. ECS Trans. 2016, 72, 1. [Google Scholar] [CrossRef]
- Platinum Price VS Gold Price. Available online: https://sdbullion.com/blog/platinum-value-vs-gold/ (accessed on 30 July 2019).
- Woudberg, S.; Smit, F. Comparative Analysis of Geometric Models for Predicting the Dynamic Specific Surface of Foamlike Media. In Proceedings of the 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry, Kona, HI, USA, 22–27 June 2014; Vafai, K., Bejan, A., Nakayama, A., Manca, O., Eds.; ECI Symposium Series: New Delhi, India, 2014. Available online: http://dc.engconfintl.org/porous_media_V/51 (accessed on 30 June 2019).
- Milazzo, R.G.; D’Arrigo, G.; Spinella, C.; Grimaldi, M.G.; Rimini, E. Investigation of Ag-Assisted Chemical Etching on (100) and (111) Contiguous Silicon Surfaces. ECS J. Solid State Sci. Technol. 2013, 2, P405–P412. [Google Scholar] [CrossRef]
- Thouless, M.D. Cracking and delamination of coatings. J. Vac. Sci. Technol. A 1991, 9, 2510–2515. [Google Scholar] [CrossRef]
- Meirom, R.A.; Clark, T.E.; Muhlstein, C.L. The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films. Acta Mater. 2012, 60, 1408–1417. [Google Scholar] [CrossRef]
- Lu, N.; Wang, X.; Suo, Z.; Vlassak, J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 2007, 91, 221909. [Google Scholar] [CrossRef]
- Andersons, J.; Tarasovs, S.; Leterrier, Y. Evaluation of thin film adhesion to a compliant substrate by the analysis of progressive buckling in the fragmentation test. Thin Solid Film. 2009, 517, 2007–2011. [Google Scholar] [CrossRef] [Green Version]
- Cordill, M.J.; Taylor, A.; Schalko, J.; Dehm, G. Fracture and Delamination of Chromium Thin Films on Polymer Substrates. Met. Mater. Trans. A 2010, 41, 870–875. [Google Scholar] [CrossRef]
- Frank, S.; Handge, U.A.; Olliges, S.; Spolenak, R. The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis. Acta Mater. 2009, 57, 1442–1453. [Google Scholar] [CrossRef]
- Cordill, M.J.; Fisher, F.D.; Rammerstorfer, F.G.; Dehm, G. Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model. Acta Mater. 2010, 58, 5520–5531. [Google Scholar] [CrossRef]
Thickness (nm) | Loading (mg/cm2) | Activity (mV/dec) | Stability (mV/h) | |
---|---|---|---|---|
Foam A | 0 | 0 | −141 | 13 |
20 | 0.006 | −80 | 15 | |
50 | 0.02 | −80 | 8 | |
65 | 0.03 | −75 | 9 | |
Foam B | 0 | 0 | −120 | 23.4 |
30 | 0.013 | −78 | 21.7 | |
75 | 0.05 | −50 | 15 | |
85 | 0.057 | −60 | 29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milazzo, R.G.; Privitera, S.M.S.; Scalese, S.; Lombardo, S.A. Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction. Energies 2019, 12, 3116. https://doi.org/10.3390/en12163116
Milazzo RG, Privitera SMS, Scalese S, Lombardo SA. Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction. Energies. 2019; 12(16):3116. https://doi.org/10.3390/en12163116
Chicago/Turabian StyleMilazzo, Rachela G., Stefania M. S. Privitera, Silvia Scalese, and Salvatore A. Lombardo. 2019. "Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction" Energies 12, no. 16: 3116. https://doi.org/10.3390/en12163116
APA StyleMilazzo, R. G., Privitera, S. M. S., Scalese, S., & Lombardo, S. A. (2019). Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction. Energies, 12(16), 3116. https://doi.org/10.3390/en12163116