A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels
Abstract
:1. Introduction
- analyze the variation over time of the internal and external solar radiation with the horizontal fixed PV panels;
- determine the shading value that is necessary to reach the minimum and maximum thresholds of solar radiation for some plant species;
- compare these shading values with those obtained from the fixed and horizontal PV panels in the different months of the year; and
- identify a simple mathematical model to determine the optimal distance between the fixed and horizontal PV panels.
2. Materials and Methods
3. Results and Discussion
Economic Feasibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 2015, 138, 291–301. [Google Scholar] [CrossRef]
- Badgery-Parker, J. The Greenhouse; Agnote DPI/249; New South Wales Agriculture: New South Wales, Australia, 1999.
- Daviesa, P.A.; Zaragozab, G. Ideal performance of a self-cooling greenhouse. Appl. Therm. Eng. 2019, 149, 502–511. [Google Scholar] [CrossRef]
- Kadowaki, M.; Yano, A.; Ishizu, F.; Tanak, T.; Noda, S. Effects of greenhouse photovoltaic array shading on Welsh onion growth. Biosyst. Eng. 2012, 111, 290–297. [Google Scholar] [CrossRef]
- Shamshiri, R.; Ismail, W.I.W. A Review of Greenhouse Climate Control and Automation Systems in Tropical Regions. J. Agric. Sci. Appl. 2013, 2, 176–183. [Google Scholar] [CrossRef]
- Hanan, J.J. Greenhouses: Advanced Technology for Protected Horticulture, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Bakker, J.C.; Adams, S.R.; Boulard, T.; Montero, J.I. Innovate technologies for an efficient use of energy. Acta Hortic. 2008, 801, 49–62. [Google Scholar] [CrossRef]
- Naijun Zhou, N.; Yu, Y.; Jinping Yi, J.; Liu, R. A study on thermal calculation method for a plastic greenhouse with solar energy storage and heating. Sol. Energy 2017, 142, 39–48. [Google Scholar] [CrossRef]
- Bailey, B.J. The environment in evaporative cooled greenhouses. Acta Hortic. 1990, 287, 59–66. [Google Scholar]
- Boulard, T.; Baille, A. A simple greenhouse climate control model incorporating effects of ventilation and evaporative cooling. Agric. For. Meteorol. 1993, 65, 145–157. [Google Scholar] [CrossRef]
- Jain, D.; Tiwari, G.N. Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Convers. Manag. 2002, 43, 2235–2250. [Google Scholar] [CrossRef]
- Leyva, R.; Constán-Aguilar, C.; Sánchez-Rodríguez, E.; Romero-Gámez, M.; Soriano, T. Cooling systems in screenhouses: Effect on microclimate, productivity and plant response in a tomato crop. Biosyst. Eng. 2015, 129, 100–111. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S. A Review of Ventilation and Cooling Technologies in Agricultural Greenhouse Application. Iran. J. Energy Environ. 2011, 2, 32–46. [Google Scholar]
- Sethi, V.P.; Sharma, S.K. Experimental and economic study of a greenhouse thermal control system using aquifer water. Energy Convers. Manag. 2007, 48, 306–319. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sharma, S.K. Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol. Energy 2007, 81, 1447–1459. [Google Scholar] [CrossRef]
- Kumar, K.S.; Tiwari, K.N.; Jha, M.K. Design and technology for greenhouse cooling in tropical and subtropical regions: A review. Energy Build. 2009, 41, 1269–1275. [Google Scholar] [CrossRef]
- Stanghellini, C.; Van Meurs, W.T.M. Environmental control of greenhouse crop transpiration. J. Agric. Eng. Res. 1992, 51, 297–311. [Google Scholar] [CrossRef]
- Hashem, F.A.; Medany, M.A.; Abd El-Moniem, E.M.; Abdallah, M.M.F. Influence of greenhouse cover on potential evapotranspiration and cucumber water requirements. Ann. Agric. Sci. 2011, 56, 49–55. [Google Scholar] [CrossRef]
- Baille, A.; Kittas, C.; Katsoulas, N. Influence of whitening on greenhouse microclimate and crop energy portioning. Agric. For. Meteorol. 2001, 107, 293–306. [Google Scholar] [CrossRef]
- Mashonjowa, E.; Ronsse, F.; Mhizha, T.; Milford, J.R.; Lemeur, R.; Pieters, J.G. The effects of whitening and dust accumulation on the microclimate and canopy behavior of rose plants (Rosa hybrida) in a greenhouse in Zimbabwe. Sol. Energy 2010, 84, 10–23. [Google Scholar] [CrossRef]
- Willits, D.H. The effect of cloth characteristics on the cooling performance of external shade cloths for greenhouses. J. Agric. Eng. Res. 2001, 79, 331–340. [Google Scholar] [CrossRef]
- Willits, D.H. The effect of cloth temperature on the cooling efficiency of shade cloths in greenhouses. Trans. ASAE 2003, 46, 1215–1221. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N.; Srivastava, N.S.L. Modeling and experimental validation of a greenhouse with evaporative cooling by moving water film over external shade cloth. Energy Build. 2003, 35, 843–850. [Google Scholar] [CrossRef]
- Vladimirova, S.V.; Bucklin, R.A.; McConnell, D.B. Influence of shade level, wind velocity, and wind direction on interior air temperature of model shade structures. Trans. ASAE 1996, 39, 1825–1830. [Google Scholar] [CrossRef]
- Soni, P.; Salokhe, V.M.; Tantau, H.J. Effect of screen mesh size on vertical temperature distribution in naturally ventilated tropical greenhouses. Biosyst. Eng. 2005, 92, 469–482. [Google Scholar] [CrossRef]
- Ali, H.M.; Moustafa, S.; El-Mansy, H. An efficient greenhouse design for hot climates. Energy Convers. Manag. 1990, 30, 433–437. [Google Scholar] [CrossRef]
- Kittas, C.; Rigakis, N.; Katsoulas, N.; Bartzanas, T. Influence of shading screens on microclimate, growth and productivity of tomato. Acta Hortic. (ISHS) 2009, 807, 97–102. [Google Scholar] [CrossRef]
- Harmanto, M.; Tantau, H.J.; Salokhe, V.M. Microclimate and air exchange rates in greenhouses covered with different nets in the humid tropics. Biosyst. Eng. 2006, 94, 239–253. [Google Scholar] [CrossRef]
- Al-Helal, I.M. Effects of ventilation rate on the environment of a fan-pad evaporatively cooled shaded greenhouse in extreme arid climates. Appl. Eng. Agric. 2007, 23, 221–230. [Google Scholar] [CrossRef]
- Sandri, M.A.; Andriolo, J.L.; Witter, M.; Dal Ross, T. Effect of shading on tomato plants grow under greenhouse. Hortic. Bras. 2003, 21, 642–645. [Google Scholar] [CrossRef] [Green Version]
- Medany, A.M.; Hassanein, M.K.; Farag, A.A. Effect of black and white nets as alternative covers in sweet pepper production under greenhouses in Egypt. Acta Hortic. (ISHS) 2009, 807, 121–126. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A.; Eleftherakis, D. Mechanical behavior and properties of agricultural nets—Part II: Analysis of the performance of the main categories of agricultural nets. Polym. Test. 2007, 26, 970–984. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Picuno, P.; Al-Helal, I.; Alsadon, A.; Ibrahim, A.; Shady, M. Radiometric characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies 2015, 8, 13928–13937. [Google Scholar] [CrossRef]
- Kim, G.; Lim, H.S.; Lim, T.S.; Schaefer, L.; Kim, J.T. Comparative advantage of an exterior shading device in thermal performance for residential buildings. Energy Build. 2012, 46, 105–111. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, K.J.; Choi, B.E.; Jo, J.H.; Cho, S.; Cho, Y.H. A study on the variation of heating and cooling load according to the use of horizontal shading and venetian blinds in office buildings in Korea. Energies 2015, 8, 1487–1504. [Google Scholar] [CrossRef]
- Huang, K.T.; Liu, K.F.R.; Liang, H.H. Design and energy performance of a buoyancy driven exterior shading device for building application in Taiwan. Energies 2015, 8, 2358–2380. [Google Scholar] [CrossRef]
- Picuno, P. Innovative material and improved technical design for a sustainable exploitation of agricultural plastic film. Polym. Plast. Technol. Eng. 2014, 53, 1000–1011. [Google Scholar] [CrossRef]
- Sethi, V.P.; Dubey, R.K.; Dhath, A.S. Design and evaluation of modified screen net house for off-season vegetable raising in composite climate. Energy Convers. Manag. 2009, 50, 3112–3128. [Google Scholar] [CrossRef]
- Schettini, E.; De Salvador, F.R.; Scarascia-Mugnozza, G.; Vox, G. Evaluation of colored nets in peach protected cultivation. Acta Hortic. (ISHS) 2011, 893, 235–242. [Google Scholar] [CrossRef]
- Sica, C.; Picuno, P. Spectro-radiometrical characterization of plastic nets for protected cultivation. Acta Hortic. (ISHS) 2008, 801, 245–252. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Abdel-Ghany, A.M. Measuring and evaluating solar radiative properties of plastic shading nets. Sol. Energy Mater. Sol. Cells 2011, 95, 677–683. [Google Scholar] [CrossRef]
- Al-Arifi, A.; Short, T.; Ling, P. Influence of shading ratio, air velocity and evapotranspiration on greenhouse crop microclimate. In Proceedings of the ASAE International Meeting, Toronto, ON, Canada, 19–21 July 1999. [Google Scholar]
- Nelson, P.V. Chapter 12. Light and Temperature. In Greenhouse Operation and Management, 6th ed.; Prentice Hall: Englewoods Cliffs, NJ, USA, 2003; p. 400. [Google Scholar]
- Kessler, J.R.; Armitage, A.M. Effects of shading on growth rate, flower initiation and flower development of Begonia semperflorens-cultorum. J. Hortic. Sci. 1992, 67, 849–854. [Google Scholar] [CrossRef]
- Quigley, M.F.; Mulhall, S. Effects of variable shading in a greenhouse study on rhizome weight, root length, and bud proliferation in goldenseal. Hortic. Technol. 2002, 12, 717–720. [Google Scholar] [CrossRef]
- Santos, M.M.; Morales-Payan, J.P.; Bewick, T.A.; Shilling, D.G. Effects of shading on the growth of nutsedges. Weed. Sci. 1997, 45, 670–673. [Google Scholar]
- Thompson, M.; Thompson, E.J. Begonias: The Complete Reference; Times Books: New York, NY, USA, 1981. [Google Scholar]
- Kittas, C.; Bartzanas, T.; Jaffrin, A. Greenhouse evaporative cooling: Measurement and data analysis. Trans. ASAE 2001, 44, 683. [Google Scholar] [CrossRef]
- Glenn, E.P.; Cardran, P.; Thompson, T. Seasonal effects of shading on growth of greenhouse lettuce and spinach. Sci. Hortic. 1984, 24, 231–239. [Google Scholar] [CrossRef]
- Ross, J.; Sulev, M. Sources of errors in measurements of PAR. Agric. For. Meteorol. 2000, 100, 103–125. [Google Scholar] [CrossRef]
- Asrar, G.; Myneni, R.; Kanemasu, E.T. Estimation of plant canopy attributes from spectral reflectance measurements. Theory and application of optical remote sensing. Life Earth Health Sci. 1989, 252–295. Available online: https://eurekamag.com/research/002/100/002100130.php (accessed on 25 August 2019).
- Sun, Z.; Hong, L.; Jingmiao, L.; Guoping, S. Estimation of photosynthetically active radiation using solar radiation in the UV–visible spectral band. Sol. Energy 2017, 153, 611–622. [Google Scholar] [CrossRef]
- Alados, I.; Foyo-Moreno, I.; Alados-Arboledas, L. Photosynthetically active radiation: Measurements and modelling. Agric. For Meteorol. 1996, 78, 121–131. [Google Scholar] [CrossRef]
- FAO. Plant Production and Protection Paper, 90. Protected Cultivation in the Mediterranean Climate; FAO: Rome, Italy, 1990; p. 313. [Google Scholar]
- Andriolo, J.L.A.; Streck, N.A.; Buriol, G.A.; Ludke, L.; Duarte, T.S. Growth, development and dry matter distribution of a tomato crop as affected by environment. J. Hortic. Sci. Biotechnol. 1998, 73, 125–130. [Google Scholar] [CrossRef]
- Lapuerta, J.C. Anatomia y fisiologia de la planta. In El Cultivo del Tomate; Nuez, F., Ed.; Mundi-Prensa: Madrid, Spain, 1995; pp. 43–91. [Google Scholar]
- CTIFL. Maîtrise de la Conduite Climatique; Centre Technique Interprofessionel des Fruits e des Légumes: Paris, France, 1995; p. 127. [Google Scholar]
- Wang, L.; Deng, F.; Ren, W.J. Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. Field Crops Res. 2015, 180, 54–62. [Google Scholar] [CrossRef]
- Li, H.W.; Jiang, D.; Wollenweber, B.; Dai, T.B.; Cao, W.X. Effects of shading on morphology, physiology and grain yield of winter wheat. Eur. J. Agron. 2010, 33, 267–275. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; French, D.G.; Gazula, A.; Scheerens, J.C. Variety, shading, and growth stage effects on pigment concentrations in lettuce grown under contrasting temperature regimens. Hortic. Technol. 2003, 13, 677–683. [Google Scholar] [CrossRef]
- Marchiori, P.E.R.; Machado, E.C.; Ribeiro, R.V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Res. 2014, 155, 30–37. [Google Scholar] [CrossRef]
- Caradus, J.R.; Chapman, D.F. Variability of stolon characteristics and response to shading in two cultivars of white clover (Trifolium repens L.). N. Z. J. Agric. Res. 1991, 34, 239–247. [Google Scholar] [CrossRef]
- Vityakon, P.; Sae-Lee, S.; Seripong, S. Effects of tree leaf litter and shading on growth and yield of paddy rice in northeast Thailand. Kasesart J. Nat. Sci. 1993, 27, 219–222. [Google Scholar]
- Allison, J.C.S.; Williams, H.T.; Pammenter, N.W. Effect of specific leaf nitrogen content on photosynthesis of sugarcane. Ann. Appl. Biol. 1997, 131, 339–350. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Huang, W.; Yang, G. Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing. Field Crops Res. 2013, 142, 75–84. [Google Scholar] [CrossRef]
- Lemaire, G.; Van Oosterom, E.; Sheehy, J.; Jeuffroy, M.H.; Massignam, A.; Rossato, L. Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Res. 2007, 100, 91–106. [Google Scholar] [CrossRef]
- Cai, Z.Q. Shade delayed flowering and decreased photosynthesis, growth and yield of Sacha Inchi (Plukenetia volubilis) plants. Ind. Crops Prod. 2011, 34, 1235–1237. [Google Scholar] [CrossRef]
- Aloni, B.; Karni, L.; Rylski, I.; Zaidman, Z. The effect of nitrogen fertilization and shading on the incidence of color spots in sweet pepper (Capsicum annuum) fruit. J. Hortic. Sci. Biotechnol. 1994, 69, 767–773. [Google Scholar] [CrossRef]
- Cockshull, K.E.; Graves, C.J.; Cave, C.R.J. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 1992, 67, 11–24. [Google Scholar] [CrossRef]
- Kosma, C.; Triantafyllidis, V.; Papasavvas, A.G.; Salahas, G.; Patakas, A. Yield and nutritional quality of greenhouse lettuce as affected by shading and cultivation season. Emir. J. Food Agric. 2013, 25, 974–979. [Google Scholar] [CrossRef]
- Shifriss, C.; Pilowsky, M.; Benyamin Aloni, B. Variation in flower abscission of peppers under stress shading conditions. Euphytica 1994, 78, 133–136. [Google Scholar]
- Adams, S.R.; Valdes, V.M.; Cave, C.R.J.; Fenlon, J.S. The impact of changing light levels and fruit load on the pattern of tomato yields. J. Hortic. Sci. Biotechnol. 2001, 76, 368–374. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Stanojević, L.; Cvetković, D.; Fallik, E. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Hortic. 2012, 139, 90–95. [Google Scholar] [CrossRef]
- El-Gizawy, A.M.; Abdallah, M.M.F.; Gomaa, H.M.; Mohamed, S.S. Effect of different shading levels on tomato plants 2. Yield and fruit quality. Acta Hortic. 1992, 323, 349–354. [Google Scholar] [CrossRef]
- El-Aidy, F.; El-Afry, M. Influence of shade on growth and yield of tomatoes cultivated during the summer season in Egypt. Plasticulture 1983, 47, 2–6. [Google Scholar]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2010, 36, 2725–2732. [Google Scholar] [CrossRef]
- Cossu, M.; Cossu, A.; Deligios, P.A.; Ledda, L.; Li, Z.; Fatnassie, H.; Poncete, C.; Yano, Y. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe. Renew. Sustain. Energy Rev. 2018, 94, 822–834. [Google Scholar] [CrossRef]
- Marucci, A.; Cappuccini, A. Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions. Appl. Energy 2016, 170, 362–376. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Pisante, M. Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce. Sci. Hortic. 2015, 192, 70–79. [Google Scholar] [CrossRef]
- Allardyce, C.S.; Fankhauser, C.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. The influence of greenhouse-integrated photovoltaics on crop production. Sol. Energy 2017, 155, 517–522. [Google Scholar] [CrossRef]
- Gent, M.P.N. Effect of degree and duration of shade on quality of greenhouse tomato. Hortic. Sci. 2007, 42, 514–520. [Google Scholar] [CrossRef]
- Gent, M.P.N. Density and duration of shade affect water and nutrient use in greenhouse tomato. J. Am. Soc. Hortic. Sci. 2008, 133, 619–627. [Google Scholar] [CrossRef]
- Marucci, A.; Cappuccini, A. Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period. Energy 2016, 102, 302–312. [Google Scholar] [CrossRef]
- Moretti, S.; Marucci, A. A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production. Energies 2019, 12, 2589. [Google Scholar] [CrossRef]
- ASTM International. Available online: http://www.astm.org (accessed on 10 June 2019).
- NREL Transforming ENERGY Solar Spectral. Available online: https://www.nrel.gov/grid/solar-resource/spectra.html (accessed on 10 June 2019).
- Gueymard, C. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 2001, 71, 325–346. [Google Scholar] [CrossRef]
- Gueymard, C. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2002, 76, 443–467. [Google Scholar] [CrossRef]
- Albright, L.D. Plant Growth Chamber Handbook; Iowa Agriculture and Home Economics Experiment Station Special Report No. 99; Cornell University: Ithaca, NY, USA, 1998. [Google Scholar]
Geometric Elements | Dimensions | Unit of Measure |
---|---|---|
Length | 3.79 | m |
Width | 2.41 | m |
Ridge height | 2.05 | m |
Eave height (south wall) | 0.94 | m |
Eave height (north wall) | 1.36 | m |
Photovoltaic surface | 8.15 | m2 |
Photovoltaic pitch slope (south) | 33 | ° |
Non-photovoltaic pitch slope (north) | 51 | ° |
Glass thickness | 3 | mm |
Plant Species | PAR (μ mol s−1 m−2) | Solar Radiation (W m−2) |
---|---|---|
African Violet (Saintpaulia ionantha) | 150–250 | 78–129 |
Ornamental leaf plants | 150–250 | 78–129 |
Carnation (Dianthus caryophyllus) | 250–450 | 129–233 |
Chrysanthemum (Dendranthema grandiflorum) | 250–450 | 129–233 |
Lily (Lilium spp.) | 250–450 | 129–233 |
Geranium (Pelargonium spp.) | 250–450 | 129–233 |
Poinsettia (Euphorbia pulcherrima) | 250–450 | 129–233 |
Cucumber (Cucumis sativus L.) | 250–450 | 129–233 |
Lettuce (Lactuca sativa L.) | 250–450 | 129–233 |
Cultivated strawberry (Fragaria x ananassa Duch) | 250–450 | 129–233 |
Rose (Rosa multiflora Thunb) | 450–750 | 233–388 |
Tomato (Lycopersicon esculentum) | 450–750 | 233–388 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, S.; Marucci, A. A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels. Energies 2019, 12, 3269. https://doi.org/10.3390/en12173269
Moretti S, Marucci A. A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels. Energies. 2019; 12(17):3269. https://doi.org/10.3390/en12173269
Chicago/Turabian StyleMoretti, Simona, and Alvaro Marucci. 2019. "A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels" Energies 12, no. 17: 3269. https://doi.org/10.3390/en12173269
APA StyleMoretti, S., & Marucci, A. (2019). A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels. Energies, 12(17), 3269. https://doi.org/10.3390/en12173269