Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Digestate
2.2. Biological Stability Index: SOUR Determination
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Feedstock and Digestate Characterization
3.2. Biological Characterization
3.3. Effect of Dark Fermentation on Digestate Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; EU: Brussels, Belgium, 2015; Volume 2. [Google Scholar]
- Webster, K. What might we say about a circular economy? Some temptations to avoid if possible. World Future J. Gen. Evol. 2013, 69, 542–554. [Google Scholar] [CrossRef]
- EEA. The Circular Economy and the Bioeconomy Partners in Sustainability; EEA: Copenhagen, Denmark, 2018. [Google Scholar]
- ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale. Rapporto Rifiuti Urbani Ed. 2018; ISPRA: Rome, Italy, 2018. [Google Scholar]
- Pecorini, I.; Olivieri, T.; Bacchi, D.; Paradisi, A.; Lombardi, L.; Corti, A.; Carnevale, E. Evaluation of gas production in a industrial anaerobic digester by means of biochemical methane potential of organic municipal solid waste components. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes—ECOS 2012, Houston, TX, USA, 26–29 June 2012; Volume 5, pp. 173–184. [Google Scholar]
- Iacovidou, E.; Ohandja, D.G.; Voulvoulis, N. Food waste co-digestion with sewage sludge—Realising its potential in the UK. J. Environ. Manag. 2012, 112, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, B.; Acutis, M.; Adani, F. Precision determination for the dynamic respirometric index (DRI) method used for biological stability evaluation on municipal solid waste and derived products. Waste Manag. 2011, 31, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, L.D.; Koch, K.; Bolzonella, D.; Drewes, J.E. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renew. Sustain. Energy Rev. 2017, 72, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Baccioli, U.; Ferrari, A.; Pecorini, L.; Marchionni, I.; Susini, A.; Desideri, C. Feasibility analysis of a biogas-fuelled trigeneration plant operating with a mGT. In Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS, Vila Flor Palace, Guimarães, Portugal, 17–22 June 2018; University of Minho: Braga, Portugal, 2018. [Google Scholar]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Cavinato, C.; Bolzonella, D.; Pavan, P.; Fatone, F.; Cecchi, F. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 2013, 55, 260–265. [Google Scholar] [CrossRef]
- Chinellato, G.; Cavinato, C.; Bolzonella, D.; Heaven, S.; Banks, C.J. Biohydrogen production from food waste in batch and semi-continuous conditions: Evaluation of a two-phase approach with digestate recirculation for pH control. Int. J. Hydrog. Energy 2013, 38, 4351–4360. [Google Scholar] [CrossRef] [Green Version]
- Micolucci, F.; Gottardo, M.; Bolzonella, D.; Pavan, P. Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int. J. Hydrog. Energy 2014, 39, 17563–17572. [Google Scholar] [CrossRef]
- Pecorini, I.; Ferrari, L.; Baldi, F.; Albini, E.; Galoppi, G.; Bacchi, D.; Vizza, F.; Lombardi, L.; Carcasci, C.; Ferrara, G.; et al. Energy recovery from fermentative biohydrogen production of biowaste: A case study based analysis. Energy Procedia 2017, 126, 605–612. [Google Scholar] [CrossRef]
- Liu, D.; Liu, D.; Zeng, R.J.; Angelidaki, I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 2006, 40, 2230–2236. [Google Scholar] [CrossRef]
- De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 2013, 33, 1345–1361. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, C.; Giuliano, A.; Bolzonella, D.; Pavan, P.; Cecchi, F. Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. Int. J. Hydrog. Energy 2012, 37, 11549–11555. [Google Scholar] [CrossRef]
- Cavinato, C.; da Ros, C.; Pavan, P.; Cecchi, F.; Bolzonella, D. Treatment of waste activated sludge together with agro-waste by anaerobic digestion: Focus on effluent quality. Water Sci. Technol. 2014, 69, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, D. Winery waste recycling through anaerobic co-digestion with waste activated sludge. Waste Manag. 2014, 34, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wickham, R.; Nghiem, L.D. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. Int. Biodeterior. Biodegrad. 2017, 116, 191–197. [Google Scholar] [CrossRef]
- Baldi, F.; Pecorini, I.; Iannelli, R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production. Renew. Energy 2019, 143, 1755–1765. [Google Scholar] [CrossRef]
- Lee, D.Y.; Ebie, Y.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour. Technol. 2010, 101, S42–S47. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Xie, L.; Zhou, Q.; Angelidaki, I. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour. Technol. 2011, 102, 8700–8706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voelklein, M.A.; Jacob, A.; Shea, R.O.; Murphy, J.D. Assessment of increasing loading rate on two-stage digestion of food waste. Bioresour. Technol. 2016, 202, 172–180. [Google Scholar] [CrossRef] [PubMed]
- de Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.; Spiga, D. Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag. 2017, 68, 595–602. [Google Scholar] [CrossRef]
- European Commission. Circular Economy Package. Proposal for a Regulation of the European Parliament and of the Council Laying down Rules on the Making Available on the Market of CE Marked Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009; European Commission: Brussels, Belgium, 2016; Volume 1069, pp. 1–74. [Google Scholar]
- Tambone, F.; Genevini, P.; D’Imporzano, G.; Adani, F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 2009, 100, 3140–3142. [Google Scholar] [CrossRef]
- Orzi, V.; Cadena, E.; D’Imporzano, G.; Artola, A.; Davoli, E.; Crivelli, M.; Adani, F. Bioresource Technology Potential odour emission measurement in organic fraction of municipal solid waste during anaerobic digestion: Relationship with process and biological stability parameters. Bioresour. Technol. 2010, 101, 7330–7337. [Google Scholar] [CrossRef] [PubMed]
- Cabañas-Vargas, D.D.; Sánchez-Monedero, M.A.; Urpilainen, S.T.; Kamilaki, A.; Stentiford, E.I. Assessing the stability and maturity of compost at large-scale plants. Ingeniería 2005, 9, 25–30. [Google Scholar]
- Adani, F.; Lozzi, P.; Genevini, P. Determination of Biological Stability by Oxygen Uptake on Municipal Solid Waste and Derived Products. Compost Sci. Util. 2001, 9, 163–178. [Google Scholar] [CrossRef]
- Giraldi, D.; Iannelli, R. Measurements of water content distribution in vertical subsurface flow constructed wetlands using a capacitance probe: Benefits and limitations. Desalination 2009, 243, 182–194. [Google Scholar] [CrossRef]
- Scaglia, B.; Erriquens, F.G.; Gigliotti, G.; Taccari, M. Precision determination for the specific oxygen uptake rate (SOUR) method used for biological stability evaluation of compost and biostabilized products. Bioresour. Technol. 2007, 98, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Scaglia, B.; D’Imporzano, G.; Garuti, G.; Negri, M.; Adani, F. Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge. Sci. Total Environ. 2014, 466–467, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Tambone, F.; Orzi, V.; Zilio, M.; Adani, F. Measuring the organic amendment properties of the liquid fraction of digestate. Waste Manag. 2019, 88, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Schievano, A.; Scaglia, B.; D’Imporzano, G.; Malagutti, L.; Gozzi, A.; Adani, F. Prediction of biogas potentials using quick laboratory analyses: Upgrading previous models for application to heterogeneous organic matrices. Bioresour. Technol. 2009, 100, 5777–5782. [Google Scholar] [CrossRef] [PubMed]
- Lasaridi, K.E.; Stentiford, E.I. Respirometric Techniques in the Context of Compost Stability Assessment:Principles and Practice. In The Science of Composting; Springer: Dordrecht, The Netherlands, 1996; pp. 274–285. [Google Scholar]
- Adani, F.; Gigliotti, G.; Valentini, F.; Laraia, R. Respiration Index Determination: A Comparative Study of Different Methods. Compost Sci. Util. 2003, 11, 144–151. [Google Scholar] [CrossRef]
- APHA (American Public Health Association); AWWA (American Water Works Association); WEF (Water Environment Federation). 5210 biochemical oxygen demand (Bod). Stand. Methods Exam. Water Wastewater 2001, 5000, 2–13. [Google Scholar]
- Lasaridi, K.E.; Stentiford, E.I. A simple respirometric technique for assessing compost stability. Water Res. 1998, 32, 3717–3723. [Google Scholar] [CrossRef]
- APHA. American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 18th ed.; APHA: Washington, DC, USA, 2006. [Google Scholar]
- EN ISO 13137. EN ISO 13137:2002 Characterization of Waste—Determination of Total Organic Carbon (TOC) in Waste, Sludges and Sediments; EN: Brussels, Belgium, 2002. [Google Scholar]
- APHA—American Public Health Association. APHA 4500 NH3 B/C—Ammonia-Selective Electrode Method; APHA: Washington, DC, USA, 2012. [Google Scholar]
- US EPA. Method 8315A (SW-846): Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC), Revision 1; US EPA: Washington, DC, USA, 1996. [Google Scholar]
- EN 15407. EN 15407:2011 Solid Recovered Fuels—Methods for the Determination of Carbon (C), Hydrogen (H) and Nitrogen (N) Content; EN: Brussels, Belgium, 2011. [Google Scholar]
- EPA 6010 D. Inductively Coupled Plasma—Optical Emission Spectrometry; EPA: Washington, DC, USA, 2014. [Google Scholar]
- EN 13657. EN 13657:2004 Characterization of Waste—Digestion for Subsequent Determination of Aqua Regia Soluble Portion of Elements; EN: Brussels, Belgium, 2004. [Google Scholar]
- European Commission. European Commission Regulation 2009/152/EC of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed. J. Eur. Union 2009, 1–54. Available online: https: //publications.europa.eu/en/publication-detail/-/publication/72709682-c5e2-42a4-948d-1877344bb582/language-en (accessed on 17 September 2019).
- Martillotti, F.; Antongiovanni, M.; Rizzi, L.; Santi, E.; Bittante, G. Metodi di Analisi per gli Alimenti D’impiego Zootecnico; Quaderni metodologici n. 8 ; CNR-IPRA: Rome, Italy, 1987. [Google Scholar]
- Favaro, L.; Alibardi, L.; Lavagnolo, M.C.; Casella, S.; Basaglia, M. Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int. J. Hydrog. Energy 2013, 38, 11774–11779. [Google Scholar] [CrossRef]
- Alibardi, L.; Cossu, R. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 2015, 36, 147–155. [Google Scholar] [CrossRef] [PubMed]
- APAT. Agenzia per la Protezione Dell’ambiente, and e per i servizi Tecnici. Digestione Anaerobica Della Frazione Organica dei Rifiuti Solidi—Manuali e Linee Guida 13/2005; APAT: Hyderabad, India, 2005. [Google Scholar]
- Yeshanew, M.M.; Frunzo, L.; Pirozzi, F.; Lens, P.N.L.; Esposito, G. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 2016, 220, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.F.; Li, Y.Y.; Xu, K.Q.; Ebie, Y.; Inamori, Y.; Kong, H.N. A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy 2008, 33, 4739–4746. [Google Scholar] [CrossRef]
- Bundhoo, M.A.Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrog. Energy 2016, 41, 6713–6733. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Dhar, B.R.; Nakhla, G.; Lee, H. A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 2017, 79, 656–668. [Google Scholar] [CrossRef]
- Srikanth, S.; Mohan, S.V. Regulatory function of divalent cations in controlling the acidogenic biohydrogen production process. RSC Adv. 2012, 2, 6576–6589. [Google Scholar] [CrossRef]
- Sterling, M.C., Jr.; Lacey, R.E.; Engler, C.R.; Ricke, S.C. Effects of ammonia nitrogen on H 2 and CH 4 production during anaerobic digestion of dairy cattle manure. Bioresour. Technol. 2001, 77, 9–18. [Google Scholar] [CrossRef]
- Salerno, M.B.; Park, W.; Zuo, Y.; Logan, B.E. Inhibition of biohydrogen production by ammonia. Water Res. 2006, 40, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, C.; Alatriste-mondragón, F.; Munz, G. The role of organic load and ammonia inhibition in anaerobic digestion of tannery fl eshing. Water Resour. Ind. 2018, 19, 25–34. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. Bioresource Technology A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
Process | Origins | Digestion (FW) | Co-Digestion (FW + WWS) | ||
---|---|---|---|---|---|
Sample | Process Time (days) | Sample | Process Time (days) | ||
- | Substrate | S1 | 0 | S2 | 0 |
One-stage | AD digestate | S1.1_AD | 17 | S2.1_AD | 17 |
Two-stage | DF digestate | S1.2_DF | 3 | S2.2_DF | 3 |
AD digestate | S1.2_AD | 12.8 | S2.2_AD | 11.9 |
Parameters | FW | WWS | S1.1_AD | S1.2_DF | S1.2_AD | S2.1_AD | S2.2_DF | S2.2_AD |
---|---|---|---|---|---|---|---|---|
pH | 3.80 ± 0.00 | 7.10 ± 0.00 | 6.04 ± 0.30 | 5.22 ± 0.26 | 7.61 ± 0.38 | 7.30 ± 0.37 | 5.84 ± 0.29 | 7.29 ± 0.36 |
TS (% w/w) | 12.75 ± 10.11 | 2.10 ± 0.20 | 4.00 ± 1.00 | 4.00 ± 1.00 | 2.00 ± 1.00 | 2.00 ± 1.00 | 4.00 ± 1.00 | 2.00 ± 1.00 |
TVS (% w/w) | 10.93 ± 7.78 | 1.56 ± 0.40 | 1.10 ± 0.10 | 0.80 ± 0.10 | 0.70 ± 0.10 | 0.60 ± 0.10 | 1.00 ± 0.10 | 0.90 ± 0.10 |
TOC (%C w/w) | 5.95 ± 5.73 | 1.20 ± 0.20 | 1.90 ± 0.29 | 1.67 ± 0.25 | 0.67 ± 0.10 | 0.70 ± 0.20 | 1.60 ± 0.20 | 0.60 ± 0.20 |
Ammonia (mgN/L) | 580 ± 550 | 341 ± 47 | 763 ± 110 | 540 ± 81 | 1429 ± 210 | 783 ± 78 | 404 ± 40 | 721 ± 72 |
Acetic acid (mg/Kg) | 1639 ± 963 | 830 ± 120 | < 25 | 2429 ± 364 | < 25 | < 25 | < 2 5 | 145 ± 25 |
Propionic acid (mg/Kg) | < 40 | 390 ± 71 | 499 ± 76 | 1371 ± 204 | < 25 | < 25 | 210 ± 31 | 118 ± 25 |
Butyric acid (mg/Kg) | - | - | 98 ± 15 | 2846 ± 440 | < 25 | < 25 | 625 ± 93 | < 25 |
Valeric acid (mg/Kg) | - | - | 925 ± 140 | 3251 ± 480 | < 25 | < 25 | 1043 ± 160 | < 25 |
C (% TS) | 40.20 ± 5.94 | 58.90 ± 4.30 | 46.60 ± 7.00 | 48.00 ± 7.20 | 37.30 ± 5.60 | 35.00 ± 5.10 | 40.75 ± 6.25 | 28.00 ± 4.50 |
H (% TS) | 6.65 ± 1.20 | 6.40 ± 0.50 | 6.90 ± 1.00 | 7.40 ± 1.10 | 5.25 ± 0.79 | 4.50 ± 0.50 | 5.50 ± 0.75 | 3.5 ± 0.50 |
N (% TS) | 3.15 ± 0.35 | 7.50 ± 0.90 | 4.44 ± 0.67 | 4.80 ± 0.72 | 10.90 ± 1.60 | 9.00 ± 1.00 | 4.75 ± 0.50 | 3.50 ± 0.50 |
C: N | 12.74 ± 0.46 | 7.85 ± 1.31 | 10.00 ± 1.50 | 10.00 ± 1.50 | 3.00 ± 0.45 | 4.00 ± 0.60 | 9.00 ± 1.40 | 9.00 ± 1.40 |
Ca (mg/L) | 2660 ± 2,178 | 703 ± 85 | 729 ± 100 | 773 ± 100 | 591 ± 100 | 415 ± 100 | 631 ± 100 | 557 ± 100 |
Mg (mg/L) | 378 ± 299 | 109 ± 25 | 100 | 103 ± 100 | 115 ± 100 | 109 ± 100 | 133 ± 100 | 153 ± 100 |
Na (mg/L) | 945 ± 559 | 121 ± 27 | 3087 ± 250 | 1224 ± 100 | 923 ± 100 | 417 ± 100 | 1500 ± 230 | 1718 ± 260 |
P (mg/L) | 383 ± 180 | 84 ± 21 | 147 ± 22 | 193 ± 28 | 200 ± 30 | 119 ± 17 | 155 ± 23 | 158 ± 23 |
S (mg/L) | 191 ± 90 | 189 ± 86 | 90 ± 50 | 81 ± 50 | 67 ± 50 | 141 ± 50 | 100 ± 50 | 214 ± 50 |
Proteins (% w/w) | 2.45 ± 2.05 | 0.90 ± 0.10 | 0.80 ± 0.10 | 0.70 ± 0.10 | 0.30 ± 0.10 | 0.70 ± 0.10 | 1.00 ± 0.20 | 1.00 ± 0.20 |
Lipids (% w/w) | 2.10 ± 2.55 | 0.30 | 0.19 ± 0.02 | 0.43 ± 0.07 | 0.04 ± 0.01 | 0.01 ± 0.01 | 0.17 ± 0.03 | 0.03 ± 0.01 |
Carbohydrates (% w/w) | 4.70 ± 3.82 | 0.10 | 1.10 ± 0.10 | 1.30 ± 0.20 | 0.30 ± 0.10 | 0.10 ± 0.10 | 0.90 ± 0.10 | 0.10 ± 0.10 |
Cellulose (% w/w) | 2.25 ± 1.06 | 0.10 ± 0.00 | 0.30 ± 0.03 | 0.50 ± 0.10 | < 0.10 | 0.10 ± 0.10 | 0.30 ± 0.10 | 0.10 |
Lignin (% w/w) | 2.60 3.25 | 0.30 ± 0.00 | 0.30 ± 0.10 | 0.30 ± 0.10 | 0.10 ± 0.10 | 0.30 ± 0.10 | 0.50 ± 0.10 | 0.60 ± 0.10 |
Digestion (FW) | |||
Process | Sample | SOUR [mg O2 × gTVS−1 × h−1] | OD20 [mg O2 × gTVS−1 × 20 h−1] |
- | S1 | 23 ± 13 a | 252 ± 92 c |
One-stage | S1.1_AD | 16 ± 6 a | 107 ± 51 c |
Two-stage | S1.2_DF | 34 ± 11 | 320 ± 77 |
S1.2_AD | 20 ± 5 a | 133 ± 59 c | |
Co-Digestion (FW + WWS) | |||
Process | Sample | SOUR [mg O2 × gTVS−1 × h−1] | OD20 [mg O2 × gTVS−1 × 20 h−1] |
- | S2 | 20 ± 1 a | 156 ± 28 c |
One-stage | S2.1_AD | 18 ± 0 a | 112 ± 21 c |
Two-stage | S2.2_DF | 26 ± 4 | 244 ± 25 |
S2.2_AD | 12 ± 0 b | 135 ± 12 c |
Process | Stage | Digestion (FW) | Co-Digestion (FW + WWS) | ||
---|---|---|---|---|---|
Stabilization (%) | TVS Removal (%) | Stabilization (%) | TVS Removal (%) | ||
One-stage | AD | 30.3 | 67.0 | 6.5 | 61.0 |
Two-stage | DF | −47.4 | 23.0 | −34.3 | 32.3 |
AD | 42.2 | 62.5 | 55.8 | 54.5 | |
DF + AD | 14.8 | 69.4 | 40.6 | 71.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albini, E.; Pecorini, I.; Ferrara, G. Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes. Energies 2019, 12, 3552. https://doi.org/10.3390/en12183552
Albini E, Pecorini I, Ferrara G. Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes. Energies. 2019; 12(18):3552. https://doi.org/10.3390/en12183552
Chicago/Turabian StyleAlbini, Elena, Isabella Pecorini, and Giovanni Ferrara. 2019. "Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes" Energies 12, no. 18: 3552. https://doi.org/10.3390/en12183552
APA StyleAlbini, E., Pecorini, I., & Ferrara, G. (2019). Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes. Energies, 12(18), 3552. https://doi.org/10.3390/en12183552