Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Method
2.2. Numerical Method
2.2.1. The Solver
2.2.2. The Mesh
2.2.3. Boundary Conditions
2.2.4. Simulations Performance
3. Results
3.1. Experimental Data
3.2. Numerical Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
A | flange orifice surface [] |
nozzle surface [] | |
rate between orifice and pipe diameters | |
C | discharge coefficient |
discharge coefficient | |
specific heat at constant volume | |
E | specific heat at constant volume |
expansion factor | |
k | polytropic coefficient |
constant for gases [J/mol K] | |
characteristic time | |
air density upstream [] | |
air density at atmospheric pressure and temperature [] | |
density [] | |
Mach number | |
entrainment ratio | |
primary flow rate [kg/s] | |
secondary flow rate [kg/s] | |
pressure measured [Pa] | |
pressure difference measured [Pa] | |
atmospheric pressure [Pa] | |
secondary pressure in vessel [Pa] | |
normalized secondary pressure in vessel | |
RCF | rhoCentralFoam |
References
- Sierra-Pallares, J.; García del Valle, J.; Paniagua, J.M.; García, J.; Méndez-Bueno, C.; Castro, F. Shape optimization of a long-tapered R134a ejector mixing chamber. Energy 2018, 165, 422–438. [Google Scholar] [CrossRef]
- García del Valle, J.; Sierra-Pallares, J.; Garcia Carrascal, P.; Castro Ruiz, F. An experimental and computational study of the flow pattern in a refrigerant ejector. Validation of turbulence models and real-gas effects. Appl. Therm. Eng. 2015, 89, 795–811. [Google Scholar] [CrossRef]
- Lamberts, O.; Chatelain, P.; Bartosiewicz, Y. Numerical and experimental evidence of the Fabri-choking in a supersonic ejector. Int. J. Heat Fluid Flow 2018, 69, 194–209. [Google Scholar] [CrossRef]
- Lamberts, O.; Chatelain, P.; Bourgeois, N.; Bartosiewicz, Y. The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors. Energy 2018, 158, 524–536. [Google Scholar] [CrossRef]
- Lamberts, O.; Chatelain, P.; Bartosiewicz, Y. New methods for analyzing transport phenomena in supersonic ejectors. Int. J. Heat Fluid Flow 2017, 64, 23–40. [Google Scholar] [CrossRef]
- Expósito Carrillo, J.A.; Sánchez de La Flor, F.J.; Salmerón Lissén, J.M. Single-phase ejector geometry optimisation by means of a multi-objective evolutionary algorithm and a surrogate CFD model. Energy 2018, 164, 46–64. [Google Scholar] [CrossRef]
- Petrovic, A.; Jovanovic, M.Z.; Genic, S.; Bugaric, U.; Delibasic, B. Evaluating performances of 1-D models to predict variable area supersonic gas ejector performances. Energy 2018, 163, 270–289. [Google Scholar] [CrossRef]
- Arun Kumar, R.; Rajesh, G. Physics of vacuum generation in zero-secondary flow ejectors. Phys. Fluids 2018, 30. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Jia, L.; Zhao, H.; Wang, C. Étude De L’Influence De La Friction Sur La Performance D’Un Éjecteur Supersonique. Int. J. Refrig. 2018, 85, 229–239. [Google Scholar] [CrossRef]
- Chen, W.; Shi, C.; Zhang, S.; Chen, H.; Chong, D.; Yan, J. Theoretical analysis of ejector refrigeration system performance under overall modes. Appl. Energy 2017, 185, 2074–2084. [Google Scholar] [CrossRef]
- Croquer, S.; Poncet, S.; Galanis, N. Comparison of ejector predicted performance by thermodynamic and CFD models. Int. J. Refrig. 2016, 68, 28–36. [Google Scholar] [CrossRef]
- Jafarian, A.; Azizi, M.; Forghani, P. Experimental and numerical investigation of transient phenomena in vacuum ejectors. Energy 2016, 102, 528–536. [Google Scholar] [CrossRef]
- Kong, F.S.; Jin, Y.Z.; Kim, H.D. Analytical and computational studies on the vacuum performance of a chevron ejector. Shock Waves 2016, 26, 771–788. [Google Scholar] [CrossRef]
- Mazzelli, F.; Little, A.B.; Garimella, S.; Bartosiewicz, Y. Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects. Int. J. Heat Fluid Flow 2015, 56, 305–316. [Google Scholar] [CrossRef]
- ISO. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular-Cross Section Conduits Running Full—Part 2; ISO 5167-2:2003; International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- Bell, C. fluids: Fluid Dynamics Component of Chemical Engineering Design Library (ChEDL). 2016–2018. Available online: https://github.com/CalebBell/fluids (accessed on 20 June 2019).
- AR Vacuum Technology. 2007. Available online: https://www.ar-vacuum.com/vacuum-Electronic_vacuumpressure_sensors-82.html (accessed on 10 June 2019).
- OpenFOAM Foundation. OpenFOAM® Documentation. 2018. Available online: http://www.openfoam.org/docs (accessed on 20 June 2019).
- Greenshields, C.J.; Weller, H.G.; Gasparini, L.; Reese, J.M. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 2010, 63, 1–21. [Google Scholar] [CrossRef]
- Gao, X.; Xu, C.; Dong, Y.; Xiong, M.; Li, D.; Wang, Z.; Deng, X. Developing a parallel density-based implicit solver with mesh deformation in OpenFOAM. J. Comput. Sci. 2018, 28, 59–69. [Google Scholar] [CrossRef]
- Snedde, G.; Heyns, J.; Oxtoby, O. HISA. 2018. Available online: https://hisa.gitlab.io (accessed on 20 June 2019).
- Heyns, J.A.; Oxtoby, O.F.; Steenkamp, A. Modelling high-speed flow using a matrix-free coupled solver. In Proceedings of the 9th OpenFOAM Workshop, Zagreb, Croatia, 23–26 June 2014; pp. 1–12. [Google Scholar]
- Fürst, J. Development of a coupled matrix-free LU-SGS solver for turbulent compressible flows. Comput. Fluids 2018, 172, 332–339. [Google Scholar] [CrossRef]
- Ye, S.; Yang, W.J.; Xu, X.; Li, H.; Huang, C. The Implementation of An Implicit Coupled Density based Solver based on OpenFOAM. In Proceedings of the 2017 2nd International Conference on Communication and Information Systems—ICCIS 2017, Wuhan, China, 7–9 November 2017; ACM Press: New York, NY, USA, 2017; pp. 121–125. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Jameson, A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 1988, 26, 1025–1026. [Google Scholar] [CrossRef]
- Takaaki, A. ofblockmeshdicthelper. 2018. Available online: https://github.com/takaakiaoki/ofblockmeshdicthelper (accessed on 20 June 2019).
- Kumar, V.; Sachdeva, G. 1-D model for finding geometry of a single phase ejector. Energy 2018, 165, 75–92. [Google Scholar] [CrossRef]
- Celik, I.; Ghia, U.; Roache, P. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar] [CrossRef] [Green Version]
- Poinsot, T.; Lelef, S. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 1992, 101, 104–129. [Google Scholar] [CrossRef]
- Garcia-Alcaide, V.M.; Palleja-Cabre, S.; Castilla, R.; Gamez-Montero, P.J.; Romeu, J.; Pamies, T.; Amate, J.; Milan, N. Numerical study of the aerodynamics of sound sources in a bass-reflex port. Eng. Appl. Comput. Fluid Mech. 2017, 11, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- García del Valle, J.; Saíz Jabardo, J.; Castro Ruiz, F.; San José Alonso, J. An experimental investigation of a R-134a ejector refrigeration system. Int. J. Refrig. 2014, 46, 105–113. [Google Scholar] [CrossRef]
- Jekel, C.F.; Venter, G. pwlf: A Python Library for Fitting 1D Continuous Piecewise Linear Functions. 2019. Available online: https://github.com/cjekel/piecewise_linear_fit_py (accessed on 30 June 2019).
- Thorncroft, G.; Patton, J.S.; Gordon, R. Modeling compressible air flow in a charging or discharging vessel and assessment of polytropic exponent. In Proceedings of the American Society for Engineering Education Annual Conference Proceedings, Honolulu, HI, USA, 24–27 June 2007. [Google Scholar]
Label | Name | Function |
---|---|---|
V1 | Pressure Valve | Setting for operating pressure |
DP | Flange orifice | Pressure differential for primary flow rate |
P1 | Gauge pressure | Inlet pressure |
P3 | Vacuometer sensor | Pressure in the vessel |
V2 | Vacuum valve | Setting the different vessel’s pressure |
P2 | Gauge Pressure | Pressure for secondary flow rate |
Mesh | Number of Cells | [kg/s] | [kg/s] | [kPa] |
---|---|---|---|---|
Coarse mesh | 13,000 | 0.00945 | 0.00932 | 21.57 |
Study mesh | 20,300 | 0.00946 | 0.00938 | 21.73 |
Fine mesh | 29,250 | 0.00948 | 0.00936 | 21.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macia, L.; Castilla, R.; Gamez-Montero, P.J.; Camacho, S.; Codina, E. Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam. Energies 2019, 12, 3553. https://doi.org/10.3390/en12183553
Macia L, Castilla R, Gamez-Montero PJ, Camacho S, Codina E. Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam. Energies. 2019; 12(18):3553. https://doi.org/10.3390/en12183553
Chicago/Turabian StyleMacia, Ll, R. Castilla, P. J. Gamez-Montero, S. Camacho, and E. Codina. 2019. "Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam" Energies 12, no. 18: 3553. https://doi.org/10.3390/en12183553
APA StyleMacia, L., Castilla, R., Gamez-Montero, P. J., Camacho, S., & Codina, E. (2019). Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam. Energies, 12(18), 3553. https://doi.org/10.3390/en12183553