Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Modern Portfolio Theory and the Capital Asset Pricing Model
2.2. Applying MPT and CAPM Beyond Finance
2.3. Developing the Multi-Stage Model
2.3.1. The Cost-Risk Instrumental Model
2.3.2. The Non-Pollutant Technology Efficient Frontier
2.3.3. The Emission-Risk Pollutant Technology Efficient Frontier
2.3.4. Model Adaptation with All the Non-Pollutant Technologies
2.3.5. Model Adaptations without CCS Technologies and without Biomass Technology
2.3.6. Model Adaptation with Technological Constraints
3. Results
3.1. Cross-Drawing the Cost-Risk and Emission-Risk Models and Selecting an Adequate Combination of Non-Pollutant and Pollutant Technologies
3.2. The CML-Analogous Area
4. Discussion
5. Conclusions
- Nuclear and small hydro are preferential technologies that act as if it intends to obtain the minimum cost or to get the minimum risk of the portfolio.
- In a complementary way, offshore wind technology participates at its maximum share if the minimum risk is searched, while large hydro technology is the third technology to enter its maximum in the minimum cost portfolio.
- A pollutant-only generation mix shows a higher cost than a complete generation technology portfolio and even in relation to the non-pollutant-only efficient frontier.
- A highly diversified portfolio makes it possible to achieve the lowest risk (instrumental model).
- Renewable energy sources are needed to reduce portfolio cost and risk.
- Pollutant-generation-efficient frontiers show a higher risk mainly because of the fuel cost risk.
Author Contributions
Funding
Conflicts of Interest
References
- Cormio, C.; Dicorato, M.; Minoia, A.; Trovato, M. A regional energy planning methodology including renewable energy sources and environmental constraints. Renew. Sustain. Energy Rev. 2003, 7, 99–130. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Wu, J.-H.; Hsu, Y.-J. Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty. Energy 2016, 116, 1145–1157. [Google Scholar] [CrossRef]
- Liu, Y.; He, L.; Shen, J. Optimization-based provincial hybrid renewable and non-renewable energy planning—A case study of Shanxi, China. Energy 2017, 128, 839–856. [Google Scholar] [CrossRef]
- Nie, S.; Li, Y.P.; Liu, J.; Huang, C.Z. Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty. Energy Econ. 2017, 61, 313–329. [Google Scholar] [CrossRef]
- Kim, S.; Koo, J.; Lee, C.J.; Yoon, E.S. Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors. Energy 2012, 44, 126–134. [Google Scholar] [CrossRef]
- Codina Gironès, V.; Moret, S.; Maréchal, F.; Favrat, D. Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making. Energy 2015, 90, 173–186. [Google Scholar] [CrossRef]
- Sáfián, F. Modelling the Hungarian energy system—The first step towards sustainable energy planning. Energy 2014, 69, 58–66. [Google Scholar] [CrossRef]
- Gómez, A.; Dopazo, C.; Fueyo, N. The “cost of not doing” energy planning: The Spanish energy bubble. Energy 2016, 101, 434–446. [Google Scholar] [CrossRef]
- Allan, G.; Eromenko, I.; McGregor, P.; Swales, K. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies. Energy Policy 2011, 39, 6–22. [Google Scholar] [CrossRef]
- Arnesano, M.; Carlucci, A.P.; Laforgia, D. Extension of portfolio theory application to energy planning problem—The Italian case. Energy 2012, 39, 112–124. [Google Scholar] [CrossRef]
- Awerbuch, S. Portfolio-Based Electricity Generation Planning: Implications for Renewables and Energy Security. Mitig. Adapt. Strateg. Glob. Chang. 2004, 11, 693–710. [Google Scholar] [CrossRef]
- Awerbuch, S.; Jansen, J.C.; Beurskens, L. The Role of Wind Generation in Enhancing Scotland’s Energy Diversity and Security: A Mean-Variance Portfolio Optimization of Scotland’s Generating Mix. In Analytical Methods for Energy Diversity & Security; Elsevier: Amsterdam, The Netherlands, 2008; pp. 139–150. [Google Scholar]
- Bhattacharya, A.; Kojima, S. Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method. Energy Policy 2012, 40, 69–80. [Google Scholar] [CrossRef]
- Dellano-Paz, F.; Calvo-Silvosa, A.; Iglesias Antelo, S.; Soares, I. The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach. Renew. Sustain. Energy Rev. 2015, 48, 49–61. [Google Scholar] [CrossRef]
- Delarue, E.; De Jonghe, C.; Belmans, R.; D’haeseleer, W. Applying portfolio theory to the electricity sector: Energy versus power. Energy Econ. 2011, 33, 12–23. [Google Scholar] [CrossRef]
- Dellano-Paz, F.; Calvo-Silvosa, A.; Antelo, S.I.; Soares, I. Energy planning and modern portfolio theory: A review. Renew. Sustain. Energy Rev. 2017, 77, 636–651. [Google Scholar] [CrossRef]
- Kumar, D.; Mohanta, D.K.; Reddy, M.J.B. Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission. Front. Energy 2015, 9, 91–105. [Google Scholar] [CrossRef]
- Gao, C.; Sun, M.; Shen, B.; Li, R.; Tian, L. Optimization of China’s energy structure based on portfolio theory. Energy 2014, 77, 890–897. [Google Scholar] [CrossRef]
- Gökgöz, F.; Atmaca, M.E. Financial optimization in the Turkish electricity market: Markowitz’s mean-variance approach. Renew. Sustain. Energy Rev. 2012, 16, 357–368. [Google Scholar] [CrossRef]
- Lucheroni, C.; Mari, C. CO2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis. Appl. Energy 2017, 190, 278–290. [Google Scholar] [CrossRef]
- Roques, F.; Hiroux, C.; Saguan, M. Optimal wind power deployment in Europe—A portfolio approach. Energy Policy 2010, 38, 3245–3256. [Google Scholar] [CrossRef]
- Zhu, L.; Fan, Y. Optimization of China’s generating portfolio and policy implications based on portfolio theory. Energy 2010, 35, 1391–1402. [Google Scholar] [CrossRef]
- Chen, Y.; He, L.; Guan, Y.; Lu, H.; Li, J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers. Manag. 2017, 134, 382–398. [Google Scholar] [CrossRef]
- Shaban Boloukat, M.H.; Akbari Foroud, A. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming. Energy 2016, 113, 776–787. [Google Scholar] [CrossRef]
- Falsafi, H.; Zakariazadeh, A.; Jadid, S. The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming. Energy 2014, 64, 853–867. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Liu, P.; Georgiadis, M.C. An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response. Energy 2015, 82, 865–888. [Google Scholar] [CrossRef]
- Tajeddini, M.A.; Rahimi-Kian, A.; Soroudi, A. Risk averse optimal operation of a virtual power plant using two stage stochastic programming. Energy 2014, 73, 958–967. [Google Scholar] [CrossRef] [Green Version]
- Stempien, J.P.; Chan, S.H. Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory. Appl. Energy 2017, 202, 228–237. [Google Scholar] [CrossRef]
- Jansen, J.C.; Beurskens, L.W.M.; Van Tilburg, X. Application of Portfolio Analysis to the Dutch Generating Mix; Reference case and two renewables cases, Year 2030, SE and GE scenario (No. ECN-C-05-100); Energy research Centre of the Netherlands ECN: Sint Maartensvlotbrug, The Netherlands, 2006. [Google Scholar]
- Dellano-Paz, F.; Martínez Fernandez, P.; Soares, I. Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues. Energy 2016, 115, 1347–1360. [Google Scholar] [CrossRef]
- Hickey, E.A.; Lon Carlson, J.; Loomis, D. Issues in the determination of the optimal portfolio of electricity supply options. Energy Policy 2010, 38, 2198–2207. [Google Scholar] [CrossRef]
- Jano-Ito, M.A.; Crawford-Brown, D. Investment decisions considering economic, environmental and social factors: An actors’ perspective for the electricity sector of Mexico. Energy 2017, 121, 92–106. [Google Scholar] [CrossRef]
- Chuang, M.C.; Ma, H.W. Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study. Renew. Sustain. Energy Rev. 2013, 24, 9–20. [Google Scholar] [CrossRef]
- Böhringer, C.; Bortolamedi, M. Sense and no(n)-sense of energy security indicators. Ecol. Econ. 2015, 119, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, B.; García-Verdugo, J.; San-Martín, E. Quantifying the geopolitical dimension of energy risks: A tool for energy modelling and planning. Energy 2015, 82, 479–500. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Johansson, B. Security aspects of future renewable energy systems–A short overview. Energy 2013, 61, 598–605. [Google Scholar] [CrossRef]
- Labandeira, X. Sistema Energético Y Cambio Climático: Prospectiva Tecnológica y Regulatoria (No. 02); Working Papers 2012; Economics for Energy (eforenergy.org): Vigo, Spain, 2012. [Google Scholar]
- Labandeira, X.; Linares, P.; Würzburg, K. Energías Renovables Y Cambio Climático (No. 06); Working Papers 2012; Economics for Energy (eforenergy.org): Vigo, Spain.
- Akter, S.; Kompas, T.; Ward, M.B. Application of portfolio theory to asset-based biosecurity decision analysis. Ecol. Econ. 2015, 117, 73–85. [Google Scholar] [CrossRef]
- Tolmasquim, M.T.; Seroa da Motta, R.; La Rovere, E.L.; Barata MM de, L.; Monteiro, A.G. Environmental valuation for long-term strategic planning—The case of the Brazilian power sector. Ecol. Econ. 2001, 37, 39–51. [Google Scholar] [CrossRef]
- Urhammer, E. Celestial bodies and satellites—Energy issues, models, and imaginaries in Denmark since 1973. Ecol. Econ. 2017, 131, 425–433. [Google Scholar] [CrossRef]
- Bennink, D.; Rooijers, F.; Croezen, H.; de Jong, F.; Markowska, A. VME Energy Transition Strategy: External Costs and Benefits of Electricity Generation, Transition; CE Delft: Delft, The Netherlands, 2010. [Google Scholar]
- Eyre, N. External costs. What do they mean for energy policy? Energy Policy 1997, 25, 85–95. [Google Scholar] [CrossRef]
- Söderholm, P.; Sundqvist, T. Pricing environmental externalities in the power sector: Ethical limits and implications for social choice. Ecol. Econ. 2003, 46, 333–350. [Google Scholar] [CrossRef]
- Awerbuch, S.; Yang, S. Efficient Electricity Generating Portfolios for Europe: Maximising Energy Security and Climate Change Mitigation; EIB Papers; EIB: Kirchberg, Luxembourg, 2007. [Google Scholar]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Optimizing plant size in the planning of renewable energy portfolios. Lett. Spat. Resour. Sci. 2016, 9, 169–187. [Google Scholar] [CrossRef]
- Lynch, M.Á.; Shortt, A.; Tol, R.S.J.; O’Malley, M.J. Risk–return incentives in liberalised electricity markets. Energy Econ. 2013, 40, 598–608. [Google Scholar] [CrossRef]
- Antimiani, A.; Costantini, V.; Kuik, O.; Paglialunga, E. Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments. Ecol. Econ. 2016, 128, 246–259. [Google Scholar] [CrossRef]
- Monjon, S.; Quirion, P. Addressing leakage in the EU ETS: Border adjustment or output-based allocation? Ecol. Econ. 2011, 70, 1957–1971. [Google Scholar] [CrossRef] [Green Version]
- Oberndorfer, U. EU Emission Allowances and the stock market: Evidence from the electricity industry. Ecol. Econ. 2009, 68, 1116–1126. [Google Scholar] [CrossRef] [Green Version]
- Rogge, K.S.; Schneider, M.; Hoffmann, V.H. The innovation impact of the EU Emission Trading System—Findings of company case studies in the German power sector. Ecol. Econ. 2011, 70, 513–523. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Escribano Francés, G.; Marín-Quemada, J.M.; San Martín González, E. RES and risk: Renewable energy’s contribution to energy security. A portfolio-based approach. Renew. Sustain. Energy Rev. 2013, 26, 549–559. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Martinez-Fernandez, P.; deLlano-Paz, F.; Calvo-Silvosa, A.; Soares, I. Pollutant versus non-pollutant generation technologies: A CML-analogous analysis. Environ. Dev. Sustain. 2018, 20 (Suppl. 1), 199–212. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Newell, R.G.; Stavins, R.N. A tale of two market failures: Technology and environmental policy. Ecol. Econ. 2005, 54, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar] [CrossRef]
- Sharpe, W.F. A Simplified Model for Portfolio Analysis. Manage. Sci. 1963, 9, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, W.F. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. J. Financ. 1964, 19, 425. [Google Scholar] [CrossRef]
- Min Liu Wu, F.F.; Yixin, N.I. A survey on risk management in electricity markets. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; IEEE: Piscataway, NJ, USA, 2006; p. 6. [Google Scholar] [CrossRef]
- Westner, G.; Madlener, R. The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis. Energy Policy 2010, 38, 7911–7920. [Google Scholar] [CrossRef]
- Chae, J.; Joo, S.-K. Demand Response Resource Allocation Method Using Mean-Variance Portfolio Theory for Load Aggregators in the Korean Demand Response Market. Energies 2017, 10, 879. [Google Scholar] [CrossRef]
- Yemshanov, D.; Koch, F.H.; Lu, B.; Lyons, D.B.; Prestemon, J.P.; Scarr, T.; Koehler, K. There is no silver bullet: The value of diversification in planning invasive species surveillance. Ecol. Econ. 2014, 104, 61–72. [Google Scholar] [CrossRef]
- Stirling, A. Diversity and ignorance in electricity supply investment: Addressing the solution rather than the problem. Energy Policy 1994, 22, 195–216. [Google Scholar] [CrossRef]
- Stirling, A. On the Economics and Analysis of Diversity; Science and Technology Policy Research (SPRU) Electronic Working Paper Series; Paper No. 28; University of Sussex: Brighton, UK, 1998. [Google Scholar]
- Kruyt, B.; van Vuuren, D.P.; de Vries, H.J.M.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Charwand, M.; Gitizadeh, M.; Siano, P. A new active portfolio risk management for an electricity retailer based on a drawdown risk preference. Energy 2017, 118, 387–398. [Google Scholar] [CrossRef]
- Karandikar, R.G.; Khaparde, S.A.; Kulkarni, S.V. Quantifying price risk of electricity retailer based on CAPM and RAROC methodology. Int. J. Electr. Power Energy Syst. 2007, 29, 803–809. [Google Scholar] [CrossRef]
- Rohlfs, W.; Madlener, R. Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness. Energy 2013, 52, 27–36. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, Z.; Liu, M.; Chen, Q.; Gbatu, A.P.; Ren, X. Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes. Energy 2017, 127, 594–610. [Google Scholar] [CrossRef] [Green Version]
- Copiello, S.; Gabrielli, L.; Bonifaci, P. Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate. Energy 2017, 137, 104–117. [Google Scholar] [CrossRef]
- Shimbar, A.; Ebrahimi, S.B. The application of DNPV to unlock foreign direct investment in waste-to-energy in developing countries. Energy 2017, 132, 186–193. [Google Scholar] [CrossRef]
- Zhang, G.; Du, Z. Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China. Energy 2017, 135, 249–256. [Google Scholar] [CrossRef]
- Broadstock, D.C.; Filis, G. Oil price shocks and stock market returns: New evidence from the United States and China. J. Int. Financ. Mark. Inst. Money 2014, 33, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, R.; Borba, B.S.M.C.; Rathmann, R.; Szklo, A.; Castelo Branco, D.A. Dow Jones sustainability index transmission to oil stock market returns: A GARCH approach. Energy 2012, 45, 933–943. [Google Scholar] [CrossRef]
- De-Llano, F.; Iglesias, S.; Calvo, A.; Soares, I. The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT. Energy 2014, 69, 67–81. [Google Scholar] [CrossRef]
Technology and Abbreviation Used | Cost (€/MWh) | Cost Variance | Emission (kg-CO2/MWh) | Emission Cost Variance |
---|---|---|---|---|
Nuclear (N) | 30.04 | 8.07 | - | - |
Wind (W) | 60.69 | 41.69 | - | - |
Offshore Wind (OW) | 73.81 | 52.04 | - | - |
Hydro (H) | 38.62 | 105.79 | - | - |
Small Hydro (SH) | 42.95 | 12.92 | - | - |
PV | 212.03 | 110.27 | - | - |
Biomass (B) | 96.62 | 162.84 | 1.84 | 0.01 |
Coal (C) | 52.23 | 31.51 | 734.09 | 4.77 |
Coal with CCS (C CCS) | 78.44 | 46.27 | 101.00 | 0.66 |
Natural Gas (NG) | 38.79 | 12.33 | 356.07 | 2.31 |
Natural Gas with CCS (NG CCS) | 63.60 | 44.45 | 48.67 | 0.32 |
Oil (O) | 93.17 | 155.83 | 546.46 | 3.55 |
Technology | N | C | C CCS | NG | NG CCS | O | W | H | SH | OW | B | PV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 8.07 | 3.84 | 5.07 | 3.54 | 4.26 | 15.32 | −0.07 | −0.42 | −0.46 | −0.10 | −6.40 | 0.20 |
C | 3.84 | 31.51 | 7.04 | 4.02 | 4.81 | 20.82 | −0.21 | 0.03 | 0.03 | −0.31 | −14.1 | -0.21 |
C CCS | 5.07 | 7.04 | 46.27 | 5.43 | 6.60 | 27.16 | −0.45 | 0.06 | 0.07 | −0.68 | −18.5 | -0.46 |
NG | 3.54 | 4.02 | 5.43 | 12.33 | 6.55 | 15.44 | 0.00 | −0.08 | −0.08 | 0.00 | −3.16 | 0.05 |
CCS NG | 4.26 | 4.81 | 6.60 | 6.55 | 44.45 | 18.33 | 0.00 | −0.16 | −0.17 | 0.00 | −3.38 | 0.11 |
O | 15.32 | 20.82 | 27.16 | 15.44 | 18.33 | 155.8 | −4.02 | −1.95 | −2.11 | −6.07 | −86.4 | -0.16 |
W | −0.07 | −0.21 | −0.45 | 0.00 | 0.00 | −4.02 | 41.69 | 0.94 | 1.01 | 4.68 | −0.31 | 0.09 |
H | −0.42 | 0.03 | 0.06 | −0.08 | −0.16 | −1.95 | 0.94 | 105.8 | 3.64 | 1.41 | −0.33 | 0.56 |
SH | −0.46 | 0.03 | 0.07 | −0.08 | −0.17 | −2.11 | 1.01 | 3.64 | 12.92 | 1.53 | −0.36 | 0.60 |
OW | −0.10 | −0.31 | −0.68 | 0.00 | 0.00 | −6.07 | 4.68 | 1.41 | 1.53 | 52.04 | −0.48 | 0.13 |
B | −6.40 | −14.1 | −18.5 | −3.16 | −3.38 | −86.4 | −0.31 | −0.33 | −0.36 | −0.48 | 162.8 | 0.25 |
PV | 0.20 | −0.21 | −0.46 | 0.05 | 0.11 | −0.16 | 0.09 | 0.56 | 0.60 | 0.13 | 0.25 | 110.3 |
Technology | Maximum Participation |
---|---|
Nuclear | 29.80% |
Wind | 20.30% |
Offshore Wind | 2.00% |
Hydro | 10.80% |
Small Hydro | 1.50% |
PV | 5.5% |
Biomass | 8.50% |
Coal with and without CCS | 23.40% |
Natural Gas with and without CCS | 27.60% |
Oil | 0.80% |
CCS technologies as a whole | 18% of the non-CCS coal and natural gas, and oil participations |
Technology | Maximum Weight | Maximum Participation |
---|---|---|
Nuclear | 29.80% | 60.82% |
Wind | 12.66% | 23.86% |
Offshore Wind | 2.00% | 3.92% |
Hydro | 10.80% | 22.04% |
Small Hydro | 1.50% | 3.06% |
PV | 4.16% | 7.86% |
Technology | Coal | Coal with CCS | Natural Gas | Natural Gas with CCS | Oil | Biomass |
---|---|---|---|---|---|---|
Coal | 22.846215 | −0.014355 | −0.020952 | −0.003395 | −0.004446 | 0.000102 |
Coal with CCS | −0.014355 | 0.436912 | 0.004161 | 0.000500 | 0.007233 | 0.000058 |
Natural Gas | −0.020952 | 0.004161 | 5.298606 | −0.001473 | 0.002642 | −0.000033 |
Natural Gas with CCS | −0.003395 | 0.000500 | −0.001473 | 0.102033 | 0.002162 | −0.000014 |
Oil | −0.004446 | 0.007233 | 0.002642 | 0.002162 | 12.594664 | 0.000114 |
Biomass | 0.000102 | 0.000058 | −0.000033 | −0.000014 | 0.000114 | 0.000100 |
Portfolio | Emission (kg-CO2/MWh) | Risk (kg-CO2/MWh) |
---|---|---|
GMV2.e | 63.24 | 0.2502 |
GME2.e | 53.79 | 0.2539 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Fernandez, P.; deLlano-Paz, F.; Calvo-Silvosa, A.; Soares, I. Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model. Energies 2019, 12, 3599. https://doi.org/10.3390/en12193599
Martinez-Fernandez P, deLlano-Paz F, Calvo-Silvosa A, Soares I. Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model. Energies. 2019; 12(19):3599. https://doi.org/10.3390/en12193599
Chicago/Turabian StyleMartinez-Fernandez, Paulino, Fernando deLlano-Paz, Anxo Calvo-Silvosa, and Isabel Soares. 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model" Energies 12, no. 19: 3599. https://doi.org/10.3390/en12193599
APA StyleMartinez-Fernandez, P., deLlano-Paz, F., Calvo-Silvosa, A., & Soares, I. (2019). Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model. Energies, 12(19), 3599. https://doi.org/10.3390/en12193599