Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology
Abstract
:1. Introduction
2. Methodology to Determine the Environmental Impact of Waste Fuel
- the type of compounds arising from a given element in the combustion chamber;
- the formation of the aforementioned compounds;
- the harmfulness of the aforementioned compounds in a given impact category;
- the effectiveness of the node of flue gas purification assumed in the calculations, in relation to the aforementioned compounds.
- The AIC includes environmental impact—CO, aldehydes, dioxins, benzene, toluene, pentachlorobenzene, hexachlorobenzene, methane, pentachlorophenol, hydrocarbons and derivatives, and NOx.
- The X indicator is determined for other compounds of substances that are closely related to the fuel composition. It is the product of environmental impact, creation indicators, emission indicators, and removal effectiveness. Depending on the substance nature, the product is determined in various ways, depending on the type of element and its conversion into a compound.
Limiting the Environmental Impact of Fuel from Waste
3. Characteristics of Waste Fuel Obtained during the Tests
- the material fractions constituting the largest share in the waste under analysis included plastics, paper, textiles, and composite materials;
- there was a very large fraction of plastics and textiles (in total, reaching even 70%).
- sulfur (S), chlorine (Cl), and fluorine (F), in the analytical state;
- arsenic, lead, manganese, copper, chromium, nickel, vanadium, antimony, cobalt, cadmium, and thallium, in the ash formed after ashing the sample; this was followed by the conversion of the heavy metal content into ash in the dry matter of the waste fraction;
- mercury (Hg), based on the dry weight of a given waste fraction.
- using an in-house laboratory method for sulfur (S);
- in accordance with PN—ISO 587:2000 for the chlorine (Cl) content;
- using an in-house laboratory method for the content of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and vanadium (V);
- using an in-house laboratory method for the mercury (Hg) content;
- in accordance with PN-EN 12457—4:2006 for the fluorine (F) content.
4. Discussion
- Acidification—AC;
- Human toxicity—HT;
- Climate change—CC.
5. Conclusions
- The environmental impact in the eutrophication (EU) and photo-oxidant formation (POF) categories does not depend on the elemental composition of fuel. Therefore, no limiting values were determined for these categories. In both categories, the environmental impact of the waste fuel is not greater than for lignite.
- In the depletion of mineral resources (AD) category, the fuel from waste shows each time a lower environmental impact than lignite, since the raw materials used to produce this fuel have already been used to manufacture products for other purposes.
- The environmental impact in the categories of acidification (AC) and human toxicity (HT), to the greatest extent, depends on the composition and waste fuel parameters. The elements that determine the environmental impact in these categories, to the greatest extent, include the content of chlorine, ash, and heavy metals and the calorific value.
Author Contributions
Funding
Conflicts of Interest
References
- Krawczyk, P.; Szczygieł, J. Analiza uwarunkowań stosowania paliwa alternatywnego do wytwarzania energii elektrycznej i ciepła w warunkach przedsiębiorstwa ciepłowniczego (Refuse derived fuel as a fuel for chp plant in a heating plant conditions). Rynek Energii 2013, 6, 91–96. (In Polish) [Google Scholar]
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Tabasová, A.; Kropáč, J.; Kermes, V.; Nemet, A.; Stehlík, P. Waste-to-energy technologies: Impact on environment. Energy 2012, 44, 146–155. [Google Scholar] [CrossRef]
- Fu, D.Z.; Zheng, Z.Y.; Shi, H.B.; Xiao, R.; Huang, G.H.; Li, Y.P. A multi-fuel management model for a community-level district heating system under multiple uncertainties. Energy 2017, 128, 337–356. [Google Scholar] [CrossRef]
- Chang, Y.; Huang, R.; Ries, R.J.; Masanet, E. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China. Energy 2015, 86, 335–343. [Google Scholar] [CrossRef]
- Corti, A.; Lombardi, L. Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA). Energy 2004, 29, 2109–2124. [Google Scholar] [CrossRef]
- Ustawa z Dnia 14 Grudnia 2012 r o Odpadach. Dz.U. 2013 poz 21. Waste Act of 14 December 2012. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/U/D20130021Lj.pdf (accessed on 8 January 2019).
- Kotlicki, T.; Buchta, J. Co-firing of waste in power industry-analysis of legal conditions in Poland. J. Power Technol. 2011, 91, 165–170. [Google Scholar]
- Szpadt, R.; Jędrczak, A. Wytyczne Dotyczące Wymagań dla Procesów Kompostowania, Fermentacji I Mechaniczno—Biologicznego Przetwarzania Odpadów (Guidelines for the Composting, Fermentation as well as Mechanical—Biological Waste Treatment); Ministerstwo Środowiska: Warszawa, Poland, 2008. (In Polish)
- Pikoń, K. The Multi-Criteria Environmental Impact Assessment Model of Complex Technological Systems; Politechnika Śląska: Gliwice, Poland, 2011. [Google Scholar]
- Stanek, W.; Czarnowska, L.; Pikoń, K.; Bogacka, M. Thermo-ecological cost of hard coal with inclusion of the whole life cycle chain. Energy 2015, 92, 341–348. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards; I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p. 692. ISBN 1-4020-0228-9. [Google Scholar]
- Bouska, V.; Pesek, J. Quality parameters of lignite of the north Bohemian basin in the Czech Republic in comparison with the world average lignite. Int. J. Coal Geol. 1999, 40, 211–235. [Google Scholar] [CrossRef]
- Goedkoop, M.J.; Oele, M.; Schrywer, A.; Vieira, M. SimaPro Database Manual, Methods Library; SimaPro Database Manual Colophon: London, UK, 2019. [Google Scholar]
- Technical Specification CEN/TS 15359:2011Solid Recovered Fuels—SRF. Available online: https://www.erfo.info/images/PDF/Brochure_CEN_standards_May_2013.pdf (accessed on 15 January 2019).
- Environment Agency Austria. Study on Suitability of the Different Waste—Derived Fuels for End-of-Waste Status in Accordance with Article 6 of the Waste Framework Directive—Vien, 2011; Umweltbundesamt: Dessau-Roßlau, Germany, 2009. [Google Scholar]
- Nadziakiewicz, J.; Wacławiak, K.; Stelmach, S. Procesy Termiczne Utylizacji Odpadów (The Thermal Waste Treatment Processes); Wydawnictwo Politechniki Śląskiej (Silesian University of Technology): Gliwice, Poland, 2012. (In Polish) [Google Scholar]
- EPA. Emissions from Waste Incineration. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, European Environment Agency, Technical Guidance to Prepare National Emission Inventories, EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013; EPA: Washington, DC, USA, 2013.
- Wilk, R.K. Podstawy Niskoemisyjnego Spalania (Basics of Low-Emission Combustion); Gnome: Katowice, Poland, 2000. (In Polish) [Google Scholar]
- Kordylewski, W. Spalanie i Paliwa (Combustion and Fuel); Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2005. (In Polish) [Google Scholar]
- Badyda, K.; Krawczyk, P.; Pikoń, K. Relative environmental footprint of waste-based fuel burned in a power boiler in the context of end-of-waste criteria assigned to the fuel. Energy 2016, 100, 425–430. [Google Scholar] [CrossRef]
- Bilitewski, B.; Hardtle, G.; Marek, K. Podręcznik Gospodarki Odpadami. Teoria i Praktyka (Handbook of Waste Management. Theory and Practice); Wydanie Pierwsze; Wydawnictwo Seidel Przywecki: Warszawa, Poland, 2003. (In Polish) [Google Scholar]
- Sieja, L. Regionalne instalacje MBP odpadów komunalnych w Polsce (Regional MBT plants for municipal waste in Poland). Siła Ekobiznesu 2013, 7, 2–6. (In Polish) [Google Scholar]
- Sztekler, K.; Komorowski, M.; Tarnowska, M.; Posak, Ł. Utilization of waste heat from rotary kiln for burning clinker in the cement plant. In Proceedings of the International Conference on the Sustainable Energy and Environment Development (SEED 2016), Chicago, IL, USA, 18–21 July 2016. [Google Scholar]
Impact Category | Value of Environmental Impact Indicator (II) | |
---|---|---|
(kg of eq. subst./Mg of fuel) | (kg of eq. subst./MJ) | |
CC—Climate change | 8.92 × 102 | 1.23 × 10−1 |
HT—Human toxicity | 3.34 × 101 | 4.59 × 10−3 |
AC—Acidification | 3.22 | 4.43 × 10−4 |
EU—Eutrophication | 1.64 × 10−1 | 2.25 × 10−5 |
POF—Photo-oxidant formation | 4.23 × 10−2 | 5.81 × 10−6 |
AD—Depletion of mineral resources | 6.71 | 9.22 × 10−4 |
Parameter | Symbol | Unit | First Measurement Series | Second Measurement Series |
---|---|---|---|---|
Total sulfur content | S | % | 0.74 | 0.33 |
Content of chlorine | Cl | % | 0.62 | 0.48 |
Content of fluorides | F | mg/kg of dry mass | 11.20 | 2.13 |
Arsenic | As | 20.10 | 0.10 | |
Lead | Pb | 28.70 | 39.00 | |
Manganese | Mn | 46.80 | 88.00 | |
Copper | Cu | 27.00 | 42.00 | |
Chromium | Cr | 43.40 | 147.00 | |
Nickel | Ni | 4.50 | 58.00 | |
Vanadium | V | 2.80 | 5.90 | |
Antimony | Sb | 14.40 | 11.00 | |
Cobalt | Co | 2.40 | 7.30 | |
The total of 9 heavy metals | 190.10 | 398.30 | ||
Thallium | Tl | 12.00 | 1.00 | |
Cadmium | Cd | 1.15 | 1.58 | |
Mercury | Hg | 2.40 | 6.36 |
Component | Content | XAC | XHT | XCC | IIfuel AC | IIfuel HT | IIfuel CC |
---|---|---|---|---|---|---|---|
kg/Mg | (kg of eq. SO2/kg of i) | (kg of eq. 1,4-DB/kg of i) | (kg of eq. CO2/kg of E) | (kg of eq. SO2/Mg of fuel) | (kg of eq. 1,4-DB/Mg of fuel) | (kg of eq. CO2/Mg of fuel) | |
Dust | 1.40 × 102 | - | 2.64 × 10−1 | - | 0 | 3.70 × 101 | 0 |
Sulfur | 7.40 | 2.75 × 10−1 | 2.75 × 10−1 | - | 2.04 | 2/04 × 100 | 0 |
Chlorine | 6/20 | 2.71 × 10−1 | 1.54 × 10−1 | - | 1.68 | 9.55 × 10−1 | 0 |
Fluorine | 1.12 × 10−2 | 9.90 × 10−1 | 4.95 × 101 | - | 1.11 × 10−2 | 5.54 × 10−1 | 0 |
Arsenic | 2.01 × 10−2 | - | 3.55 × 10−3 | - | 0 | 7.14 × 10−5 | 0 |
Cadmium | 1.15 × 10−3 | - | 7.99 | - | 0 | 9.19 × 10−3 | 0 |
Cobalt | 2.40 × 10−3 | - | 5.56 × 10−4 | - | 0 | 1.33 × 10−6 | 0 |
Chromium | 4.34 × 10−2 | - | 2.54 × 10−1 | - | 0 | 1.10 × 10−2 | 0 |
Copper | 2.70 × 10−2 | - | 3.17 × 10−2 | - | 0 | 8.56 × 10−4 | 0 |
Mercury | 2.40 × 10−3 | - | 2.07 × 10−4 | - | 0 | 4.97 × 10−7 | 0 |
Nickel | 4.50 × 10−3 | - | 1.51 × 10−3 | - | 0 | 6.80 × 10−6 | 0 |
Lead | 2.87 × 10−2 | - | 1.73 × 10−2 | - | 0 | 4.97 × 10−4 | 0 |
Antimony | 1.44 × 10−2 | - | 2.61 × 10−5 | - | 0 | 3.76 × 10−7 | 0 |
Vanadium | 2.80 × 10−3 | - | 6.24 × 10−1 | - | 0 | 1.75 × 10−3 | 0 |
Thallium | 1.00 × 10−3 | - | 4.32 × 102 | - | 0 | 4.32 × 10−1 | 0 |
AIC | - | - | - | - | 6.30 × 10−1 | 6.87 | 1.66 × 10−1 |
Carbon | 4.06 × 102 | - | - | 3/67 | 0 | 0 | 1.49 × 103 |
II fuel (kg/Mg) | - | - | - | - | 4.36 | 4.78 × 101 | 1.49 × 103 |
II coal (kg/Mg) | - | - | - | - | 3.22 | 3.34 × 101 | 8/92 × 102 |
II fuel (kg/MJ) | - | - | - | - | 1.84 × 10−4 | 2.02 × 10−3 | 6.30 × 10−2 |
II coal (kg/MJ) | - | - | - | - | 4.43 × 10−4 | 4.59 × 10−3 | 1.23 × 10−1 |
II fuel (kg/MJ)/II coal (kg/MJ) | - | - | - | - | 4.16 × 10−1 | 4.41×10−1 | 5.13×10−1 |
Component | Content | XAC | XHT | XCC | II fuel AC | II fuel HT | II fuel CC |
---|---|---|---|---|---|---|---|
kg/Mg | (kg of eq. SO2/kg of i) | (kg of eq. 1,4-DB/kg of i) | (kg of eq. CO2/kg of E) | (kg of eq. SO2/Mg of fuel) | (kg of eq. 1,4-DB/Mg of fuel) | (kg of eq. CO2/Mg of fuel) | |
Dust | 2.00 × 102 | - | 2.64 × 10−1 | - | 0 | 5.28 × 101 | 0 |
Sulfur | 3.30 | 2.75 × 10−1 | 2.75 × 10−1 | - | 9.08 × 10−1 | 9.08 × 10−1 | 0 |
Chlorine | 4.80 | 2.71 × 10−1 | 1.54 × 10−1 | - | 1.30 | 7.39 × 10−1 | 0 |
Fluorine | 2.13 × 10−3 | 9.90 × 10−1 | 4.95 × 101 | - | 2.11 × 10−3 | 1.05 × 10−1 | 0 |
Arsenic | 1.00 × 10−4 | - | 3.55 × 10−3 | - | 0 | 3.55 × 10−7 | 0 |
Cadmium | 1.58 × 10−3 | - | 7.99 × 100 | - | 0 | 1.26 × 10−2 | 0 |
Cobalt | 7.30 × 10−3 | - | 5.56 × 10−4 | - | 0 | 4.06 × 10−6 | 0 |
Chromium | 1.47 × 10−1 | - | 2.54 × 10−1 | - | 0 | 3.73 × 10−2 | 0 |
Copper | 4.20 × 10−2 | - | 3.17 × 10−2 | - | 0 | 1.33 × 10−3 | 0 |
Mercury | 6.36 × 10−3 | - | 2.07 × 10−4 | - | 0 | 1.32 × 10−6 | 0 |
Nickel | 5.80 × 10−2 | - | 1.51 × 10−3 | - | 0 | 8.76 × 10−5 | 0 |
Lead | 3.90 × 10−2 | - | 1.73 × 10−2 | - | 0 | 6.75 × 10−4 | 0 |
Antimony | 1.10 × 10−2 | - | 2.61 × 10−5 | - | 0 | 2.87 × 10−7 | 0 |
Vanadium | 5.90 × 10−3 | - | 6.24 × 10−1 | - | 0 | 3.68 × 10−3 | 0 |
Thallium | 1.00 × 10−3 | - | 4.32 × 102 | - | 0 | 4.32 × 10−1 | 0 |
AIC | - | - | - | - | 6.30 × 10−1 | 6.87 | 1.66 × 10−1 |
Carbon | 540 | - | - | 3.67 | 0 | 0 | 1.98 × 103 |
II fuel (kg/Mg) | - | - | - | - | 2.84 | 6.19 × 101 | 1.98 × 103 |
II coal (kg/Mg) | - | - | - | - | 3.22 | 3.34 × 101 | 8.92 × 102 |
II fuel (kg/MJ) | - | - | - | - | 1.27 × 10−4 | 2.77 × 10−3 | 8.88 × 10−2 |
II coal (kg/MJ) | - | - | - | - | 4.43 × 10−4 | 4.59 × 10−3 | 1.23 × 10−1 |
II fuel (kg/MJ)/II coal (kg/MJ) | - | - | - | - | 2.87 × 10−1 | 6.04 × 10−1 | 7.22 × 10−1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikoń, K.; Krawczyk, P.; Badyda, K.; Bogacka, M. Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology. Energies 2019, 12, 3691. https://doi.org/10.3390/en12193691
Pikoń K, Krawczyk P, Badyda K, Bogacka M. Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology. Energies. 2019; 12(19):3691. https://doi.org/10.3390/en12193691
Chicago/Turabian StylePikoń, Krzysztof, Piotr Krawczyk, Krzysztof Badyda, and Magdalena Bogacka. 2019. "Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology" Energies 12, no. 19: 3691. https://doi.org/10.3390/en12193691
APA StylePikoń, K., Krawczyk, P., Badyda, K., & Bogacka, M. (2019). Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology. Energies, 12(19), 3691. https://doi.org/10.3390/en12193691