Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater
Abstract
:1. Introduction
2. Establishment of Heat Transfer Models for A Single Well Buried Pipe Coupled with Flow of Groundwater
2.1. Establishment of Governing Equations for Coupled Model of Buried Pipe with Heat and Groundwater
- (1)
- Energy equation for pipeline flow
- (2)
- Energy equation for pipeline flow for porous formation
- (3)
- The permeable equation of fluid flowing in porous formation
2.2. Initial Condition and Boundary Conditions
2.2.1. Initial Condition
2.2.2. Boundary Conditions
2.3. Simplification of the Buried Pipe Model
2.4. Simplified Model Verification
2.4.1. Sandbox Test Verification
2.4.2. On-Site Thermal Response Test Verification
3. Three-Dimensional Numerical Simulation of Influence of Thermal Permeable Coupling of Ground Tube Group on Geothermal Field
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lund, J.W.; Sanner, B.; Rybach, L.; Curtis, R.; Hellstrom, G. Geothermal (groundsource) heat pumps. A world overview. GHC Bulletin 2004, 25, 1–10. [Google Scholar]
- Bernier, M. Closed-loop ground-coupled heat pump systems. ASHRAE J. 2006, 48, 13–24. [Google Scholar]
- Nguyen, H.V.; Law, Y.L.E.; Alavy, M.; Walsh, P.R.; Leong, W.H.; Dworkin, S.B. An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America. Appl. Energy 2014, 125, 28–38. [Google Scholar] [CrossRef]
- Ingersoll, L.R.; Zobel, O.J.; Ingersoll, A.C. Heat Conduction with Engineering, Geological, and Other Applications, Revised ed.; The University of Wisconsin Press: Madison, WI, USA, 1954. [Google Scholar]
- Li, M.; Lai, A.C.K. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Appl. Energy 2015, 151, 178–191. [Google Scholar] [CrossRef]
- Witte, H.J.L. Geothermal response test with heat extraction and heat injection: Examples of application in research and design of geothermal ground heat exchangers. In Europaischer Workshop uber Geothermische Response Tests; Ecole Poly Technique Federal de Lausanne: Lausanne, Switzerland, 25–26 October 2001. [Google Scholar]
- Santa, G.D.; Galgaro, A.; Tateo, F.; Cola, S. Modified compressibility of cohesive sediments induced by thermal anomalies due to a borehole heat exchanger. Eng. Geol. 2016, 202, 143–152. [Google Scholar] [CrossRef]
- Eskilson, P. Thermal Analysis of Heat Extraction Boreholes. Ph.D. Thesis, Lund University, Lund, Sweden, 1987. [Google Scholar]
- Capozza, A.; De Carli, M.; Zarrella, A. Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature. Energy Build. 2012, 55, 369–379. [Google Scholar] [CrossRef]
- Raymond, J.; Therrien, R.; Gosselin, L.; Lefebvre, R. A review of thermal response test analysis using pumping test concepts. Groundwater 2011, 49, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Guo, Z.J.; Liu, Y.F.; Cong, X.C.; Peng, D.G. A review on thermal response test of ground-coupled heat pump systems. Renew. Sustain. Energy Rev. 2014, 40, 851–867. [Google Scholar] [CrossRef]
- Lamarche, L.; Kajl, S.; Beauchamp, B. A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 2010, 39, 187–200. [Google Scholar] [CrossRef]
- Yang, H.X.; Cui, P.; Fang, Z.H. Vertical-borehole ground-coupled heat pumps: A review of models and systems. Appl. Energy 2010, 87, 16–27. [Google Scholar] [CrossRef]
- Wang, F.H.; Yu, Bin.; Yan, L. Heat transfer analysis of groundwater flow for multi-pipe heat exchanger of ground source heat pump. CIHESC J. 2010, 61, 57–62. [Google Scholar]
- Wang, H.; Qi, C.; Du, H.; Gu, J. Thermal performance of borehole heat exchanger under groundwater flow: A case study from Baoding. Energy Build. 2009, 41, 1368–1373. [Google Scholar] [CrossRef]
- Chiasson, A.D.; Rees, S.J.; Spitler, J.D. A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems. ASHRAE Trans. 2000, 106, 380–393. [Google Scholar]
- Fan, R.; Jiang, Y.; Yao, Y.; Deng, S.; Ma, Z. A study on the performance of a geothermal heat exchanger under coupled heat conduction and ground-water advection. Energy 2007, 32, 2199–2209. [Google Scholar] [CrossRef]
- Lu, G. Analysis of effect of groundwater seepage on heat transfer in under ground heat exchanger. Fujian Construct. Sci. Technol. 2011, 1, 62–63, 74. [Google Scholar]
- Luo, J.; Tuo, J.; Huang, W.; Zhu, Y.; Jiao, Y.; Xiang, W.; Rohn, J. Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers. Appl. Therm. Eng. 2018, 128, 508–516. [Google Scholar] [CrossRef]
- Spitler, J.D.; Gehlin, S.E.A. Thermal response testing for ground source heat pump systems – An historical review. Renew. Sustain. Energy Rev. 2015, 50, 1125–1137. [Google Scholar] [CrossRef]
- Diao, N.R.; Li, Q.Y.; Fang, Z.H. An analytical solution of the temperature response in geothermal heat exchangers with groundwater advection. J. Shandong Univ. Archit. Eng. 2003, 18, 1–5. [Google Scholar]
- Diao, N.; Li, Q.; Fang, Z. Heat transfer in ground heat exchangers with groundwater advection. Int. J. Therm. Sci. 2004, 43, 1203–1211. [Google Scholar] [CrossRef]
- Molina-Giraldo, N.; Bayer, P.; Blum, P. Evaluating the influence of thermaldispersion on temperature plumes from geothermal systems using analytical solutions. Int. J. Therm. Sci. 2011, 50, 1223–1231. [Google Scholar] [CrossRef]
- Wagner, V.; Blum, P.; Kubert, M.; Bayer, P. Analytical approach for groundwaterinfluencedthermal response tests of grouted borehole heat exchangers. Geothermics 2013, 46, 22–31. [Google Scholar] [CrossRef]
- Wagner, V.; Bayer, P.; Bisch, G.; Kubert, M.; Blum, P. Hydraulic characterizationof aquifers by thermal response testing: Validation by large scale tank laboratoryand field experiments. Water Resour. Res. 2014, 50, 1–15. [Google Scholar] [CrossRef]
- Aranzabal, N.; Martos, J.; Montero, Á.; Monreal, L.; Soret, J.; Torres, J.; García-Olcina, R. Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations. Appl. Therm. Eng. 2016, 99, 92–102. [Google Scholar] [CrossRef]
- Guan, X. China’s ground source heat pump development and utilization prospects. China Sci. Technol. Inf. 2010, 21, 21–23. [Google Scholar]
- Yavuzturk, G. Modeling of Vertical Ground Loop Heat Exchangers for Ground Source Heat Pump Systems; Oklahoma State University: Stillwater, OK, USA, 1999. [Google Scholar]
- Li, X.G.; Zhao, J.; Zhou, Q. Numerical simulation on the ground temperature field around U pipe underground heat exchanger. J. Acta Energ. Sol. Sin. 2004, 25, 703–707. [Google Scholar]
- Gao, Q.; Li, M.; Yan, Y. Effect on ground source field heat transfer of original earth temperature and configuration of multi-borehole. J. Therm. Sci. Technol. 2005, 4, 34–40. [Google Scholar]
- Zhao, J.; Wang, H.J. Numerical simulation on heat transfer characteristics of soil around compact pile-buried underground heat exchangers. J. HV AC 2006, 36, 11–14. [Google Scholar]
- Jia, Y.B.; Wang, Y. Comparative analyses on 2D and 3D buried tube-group heat transfer models in GCHP system. J. Grad. Univ. Chin. Acad. Sci. 2013, 30, 311–316. [Google Scholar]
- Yang, G.J.; Guo, M. Research on group arrangement method of ground heat exchanger under coupled thermal conduction and groundwater seepage conditions. Renew. Energy Resour. 2014, 32, 1182–1187. [Google Scholar]
- Li, P.; Li, M.; Ma, W.; Xiao, L. Temperature responses of ground heat exchanger clusters based on full-scale line-source solution. J. Central South Univ. 2017, 48, 2818–2822. [Google Scholar]
- Han, C.J.; Yu, X. Sensitivity analysis of a vertical geothermal heat pump system. Appl. Energy 2016, 170, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Oberdorfer, P.; Hu, R.; Rahman, M.; Holzbecher, E.; Sauter, M.; Mercker, O.; Pärisch, P. Coupled Heat Transfer in Borehole Heat Exchangers and Long Time Predictions of Solar Rechargeable Geothermal Systems; COMSOL: Milan, Italy, 2013. [Google Scholar]
- Yu, Y.; Liu, G.; Jiang, B. Finite element analysis of ground source heat pump based on non-isothermal pipe flow. J. Zhejiang Univ. Sci. Technol. 2015, 27, 218–224. [Google Scholar]
- Beier, R.A.; Smith, M.D.; Spitler, J.D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis. Geothermics 2011, 40, 79–85. [Google Scholar] [CrossRef]
Depth (m) | −5 | −10 | −15 | −20 | −30 | −40 |
#1 temperature (°C) | 17.11 | 14.25 | 14.81 | 14.87 | 14.50 | 14.80 |
#2 temperature (°C) | 17.13 | 14.63 | 14.81 | 14.88 | 14.44 | 14.81 |
Depth (m) | −50 | −60 | −70 | −80 | −90 | −100 |
#1 temperature (°C) | 14.87 | 15.01 | 15.24 | 15.37 | 15.24 | 15.87 |
#2 temperature (°C) | 14.88 | 15.06 | 15.25 | 15.38 | 15.19 | 15.88 |
Name | Unit | Number |
---|---|---|
The depth of the hole | m | 102 |
The depth of ground pipe | m | 100 |
The diameter of Drilling | mm | 150 |
The outer diameter of buried tube | mm | 32 |
The inner diameter of buried tube | mm | 26 |
U-tube spacing | mm | 100 |
The flow rate of circulating fluid | m³/h | 1.1 |
Effective thermal conductivity | W/(m·K) | 1.86 |
Formation specific heat capacity | kJ/(kg·K) | 2.80 |
U-tube thermal conductivity | W/(m·K) | 0.44 |
The roughness of wall surface | mm | 0.0015 |
The conductivity of backfill material thermal | W/(m·K) | 2.3 |
The capacity of backfill material specific heat capacity | kJ/(kg·K) | 0.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Zheng, X.; Duan, C.; Ye, J.; Liu, K. Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater. Energies 2019, 12, 3698. https://doi.org/10.3390/en12193698
Lei X, Zheng X, Duan C, Ye J, Liu K. Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater. Energies. 2019; 12(19):3698. https://doi.org/10.3390/en12193698
Chicago/Turabian StyleLei, Xinbo, Xiuhua Zheng, Chenyang Duan, Jianhong Ye, and Kang Liu. 2019. "Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater" Energies 12, no. 19: 3698. https://doi.org/10.3390/en12193698
APA StyleLei, X., Zheng, X., Duan, C., Ye, J., & Liu, K. (2019). Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater. Energies, 12(19), 3698. https://doi.org/10.3390/en12193698