Design of a Chamfering Tool Diagnosis System Using Autoencoder Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Structure
2.2. Dataset Collection
2.3. Methodology
2.4. Cross-Validation
2.5. Evaluation Metrics
3. Results
3.1. Parameter Optimization
3.2. Model Evaluation
3.3. Online Analysis
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative Study of CNN and RNN for Natural Language Processing. arXiv 2017, arXiv:1702.01923. [Google Scholar]
- Dinkel, H.; Chen, N.; Qian, Y.; Yu, K. End-to-end spoofing detection with raw waveform CLDNNS. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017. [Google Scholar]
- Brigham, E.O.; Morrow, R.E. The fast Fourier transform. IEEE Spectr. 1967, 4, 63–70. [Google Scholar] [CrossRef]
- Birlasekaran, S.; Ledwich, G. Use of FFT and ANN techniques in monitoring of transformer fault gases. In Proceedings of the 1998 International Symposium on Electrical Insulating Materials, Toyohashi, Japan, 30 September 1998; pp. 75–78. [Google Scholar]
- Liang, J.; Wang, K. Vibration Feature Extraction Using Audio Spectrum Analyzer Based Machine Learning. In Proceedings of the 2017 International Conference on Information, Communication, and Engineering (ICICE), Xiamen, China, 17–20 November 2017. [Google Scholar]
- Sainath, T.N.; Mohamed, A.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar]
- Hershey, S.; Chaudhuri, S.; Ellis, D.P.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold, B.; et al. CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017. [Google Scholar]
- Wang, C.; Lee, C.; Ouyang, C. A machine-learning-based fault diagnosis approach for intelligent condition monitoring. In Proceedings of the 2010 International Conference on Machine Learning and Cybernetics, Qingdao, China, 11–14 July 2010. [Google Scholar]
- Chen, Z.; Yeo, C.K.; Lee, B.S.; Lau, C.T. Autoencoder-based network anomaly detection. In Proceedings of the 2018 Wireless Telecommunications Symposium (WTS), Phoenix, AZ, USA, 17–20 April 2018. [Google Scholar]
- Qi, Y.; Shen, C.; Wang, D.; Shi, J.; Jiang, X.; Zhu, Z. Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery. IEEE Access 2017, 5, 15066–15079. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, S.; Cao, J. fault diagnosis of servo drive system of CNC machine based on deep learning. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018. [Google Scholar]
- Qu, X.Y.; Zeng, P.; Fu, D.D.; Xu, C.C. Autoencoder-based fault diagnosis for grinding system. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017. [Google Scholar]
- Gogoi, M.; Begum, S.A. Image Classification Using Deep Autoencoders. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICICIC), Coimbatore, Japan, 17–19 August 2017. [Google Scholar]
- Xiao, Q.; Si, Y. Human action recognition using autoencoder. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017. [Google Scholar]
- Siwek, K.; Osowski, S. Autoencoder versus PCA in face recognition. In Proceedings of the 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE), Kutna Hora, Czech Republic, 11–13 September 2017. [Google Scholar]
- Almotiri, J.; Elleithy, K.; Elleithy, A. Comparison of an autoencoder and Principal Component Analysis followed by neural network for e-learning using handwritten recognition. In Proceedings of the 2017 IEEE Long Island Systems, Applications, and Technology Conference (LISAT), Farmingdale, NY, USA, 5 May 2017. [Google Scholar]
- Vanunu, C.; Kwon, K.; Lee, E.; Moon, K.; Lee, S. Automatic Fault Diagnosis of Drills Using Artificial Neural Networks. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017. [Google Scholar]
- Min, Y.; Bin, L. Drilling Tool Failure Diagnosis Based on GA-SVM. In Proceedings of the 2012 Fourth International Conference on Computational and Information Sciences, Chongqing, China, 17–19 August 2012. [Google Scholar]
- Liu, Y.; Zhang, W.; Liao, Z. Research on fault diagnosis of HT-60 drilling rig based on t neural network expert system. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010. [Google Scholar]
- Caon, D.R.S.; Amehraye, A.; Razik, J.; Chollet, G.; Andreäo, R.V.; Mokbel, C. Experiments on acoustic model supervised adaptation and evaluation by K-Fold Cross Validation technique. In Proceedings of the 2010 5th International Symposium On I/V Communications and Mobile Network, Rabat, Morocco, 30 September–2 October 2010. [Google Scholar]
- Sun, Y.; Wang, Y.; Guo, L.; Ma, Z.; Jin, S. The comparison of optimizing SVM by GA and grid search. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, 20–22 October 2017. [Google Scholar]
- Wu, X.; Liu, J. A New Early Stopping Algorithm for Improving Neural Network Generalization. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009. [Google Scholar]
- Shao, Y.; Taff, G.N.; Walsh, S.J. Comparison of Early Stopping Criteria for Neural-Network-Based Subpixel Classification. IEEE Geosci. Remote Sens. Lett. 2010, 8, 113–117. [Google Scholar] [CrossRef]
- Hung, C.W.; Jiang, J.G.; Wu, H.H.P.; Mao, W.L. An Automated Optical Inspection system for a tube inner circumference state identification. J. Robot. Netw. Artif. Life 2018, 4, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Hung, C.W.; Chang, C.Y. Tube Inner Circumference State Classification Using Artificial Neural Networks, Random Forest and Support Vector Machines Algorithms to Optimize. In Proceedings of the International Computer Symposium ICS, Yunlin, Taiwan, 20–22 December 2018. [Google Scholar]
- Allegro MicroSystems. 120 kHz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection; Allegro MicroSystems: Marlborough, MA, USA, 2013; p. 3. [Google Scholar]
- Renesas Electronics. RX230 Group, RX231 Group Datasheet; Renesas Electronics: Tokyo, Japan, 2018; p. 1. [Google Scholar]
- Wei, L.; Su, R.; Luan, S.; Liao, Z.; Manavalan, B.; Zou, Q.; Shi, X. Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics 2019. [Google Scholar] [CrossRef]
- Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.C. A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Int. J. Mol. Sci. 2019, 20, 1964. [Google Scholar] [CrossRef]
- Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. A sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics 2019, 35, 2757–2765. [Google Scholar] [CrossRef]
- Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J. 2018, 16, 412–420. [Google Scholar] [CrossRef]
Item\Rank | 1 | 2 | 3 |
---|---|---|---|
Testing ACC | 63.89% | 61.11% | 55.56% |
Testing TPR | 45.83% | 41.67% | 37.50% |
Testing PRE | 100.0% | 100.0% | 90.00% |
Overall ACC | 83.75% | 81.25% | 80.00% |
Overall TPR | 45.83% | 41.67% | 37.50% |
Overall PRE | 100.0% | 90.91% | 90.00% |
Zoom in / out | 14 | 11.75 | 15 |
hidden layer | 3 | 3 | 3 |
judge type | MAD | SAD | MAD |
threshold | 29.91562 | 6036.352 | 620.0945 |
Item\Rank | 1 | 2 | 3 |
---|---|---|---|
Testing ACC | 87.50% | 79.17% | 75.00% |
Testing TPR | 83.33% | 100.0% | 91.67% |
Testing PRE | 90.91% | 70.59% | 68.75% |
Overall ACC | 88.75% | 85.00% | 83.75% |
Overall TPR | 75.00% | 91.67% | 83.33% |
Overall PRE | 85.71% | 68.75% | 68.97% |
Zoom in / out | 11.5 | 14.5 | 14.75 |
hidden layer | 3 | 3 | 3 |
judge type | MAD | MAD | MAD |
threshold | 20.077 | 6.911 | 4584.697 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-W.; Li, W.-T.; Mao, W.-L.; Lee, P.-C. Design of a Chamfering Tool Diagnosis System Using Autoencoder Learning Method. Energies 2019, 12, 3708. https://doi.org/10.3390/en12193708
Hung C-W, Li W-T, Mao W-L, Lee P-C. Design of a Chamfering Tool Diagnosis System Using Autoencoder Learning Method. Energies. 2019; 12(19):3708. https://doi.org/10.3390/en12193708
Chicago/Turabian StyleHung, Chung-Wen, Wei-Ting Li, Wei-Lung Mao, and Pal-Chun Lee. 2019. "Design of a Chamfering Tool Diagnosis System Using Autoencoder Learning Method" Energies 12, no. 19: 3708. https://doi.org/10.3390/en12193708
APA StyleHung, C. -W., Li, W. -T., Mao, W. -L., & Lee, P. -C. (2019). Design of a Chamfering Tool Diagnosis System Using Autoencoder Learning Method. Energies, 12(19), 3708. https://doi.org/10.3390/en12193708