Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas
Abstract
:1. Introduction
2. Background
2.1. Electrical Characteristics
- Sensitivity to an incident optical signal
- Speed of response
- Linearity
- Temperature stability
2.1.1. Optical Sensitivity
2.1.2. Speed of Response
2.1.3. Linearity
2.1.4. Temperature Stability
2.2. Beam Profile on the Solar Panel
3. System Design and Integration
3.1. Transmitter: Requirements and Limitations
3.1.1. Laser Driver and Control Circuit
3.1.2. Laser Beam and Optics
3.2. Receiver
3.2.1. Energy Harvesting and Storage
3.2.2. Analogue Equalisation for Communication
3.3. Overall System Architecture
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog-to-Digital Converter |
DAC | Digital-to-Analog Converter |
FWHM | Full Width at Half-Maximum |
FPGA | Field-Programmable Gate Array |
LASER | Light Amplification by Stimulated Emission of Radiation |
LED | Light-Emitting Diode |
MPE | Maximum Permissible Exposure |
MPPT | Maximum Power Point Tracking |
OFDM | Orthogonal Frequency Division Multiplexing |
OWC | Optical Wireless Communication |
PD | Photodiode |
RF | Radio Frequency |
SNR | Signal-to-Noise Ratio |
VCSEL | Vertical-Cavity Surface-Emitting Laser |
References
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is LiFi? J. Lightwave Technol. 2016, 34, 1533–1543. [Google Scholar] [CrossRef]
- Light Communications Alliance. Light Communications Alliance. 2019. Available online: http://lightcommunications.org/ (accessed on 3 August 2019).
- Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J.J.D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A.E.; Faulkner, G.; et al. A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride µLED. IEEE Photonics Technol. Lett. 2014, 26, 637–640. [Google Scholar] [CrossRef]
- Charles, H.K., Jr.; Ariotedjo, A.P. Review of amorphous and polycrystalline thin film silicon solar cell performance parameters. Sol. Energy 1980, 24, 329–339. [Google Scholar] [CrossRef]
- Hameiri, Z. Photovoltaics literature survey (No. 125). Progress Photovoltaics Res. Appl. 2016, 24, 405–407. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Ellingson, R.J. A Comprehensive Guide to Solar Energy Systems; Academic Press: Cambridge, MA, USA, 2018; pp. 233–254. [Google Scholar]
- Saltsman, S.O. The Silicon Solar Cell as an Optical Detector; Florida Technological University: Orlando, FL, USA, 1976. [Google Scholar]
- Kim, S.M.; Won, J.S. Simultaneous reception of visible light communication and optical energy using a solar cell receiver. In Proceedings of the 2013 International Conference on ICT Convergence (ICTC), Jeju, Korea, 14–16 October 2013; pp. 896–897. [Google Scholar] [CrossRef]
- Wang, Z.; Tsonev, D.; Videv, S.; Haas, H. Towards Self-powered solar panel receiver for optical wireless communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014. [Google Scholar]
- Wang, Z.; Tsonev, D.; Videv, S.; Haas, H. On the design of a solar panel receiver for optical wireless communication with simultaneous energy harvesting. IEEE J. Sel. Areas Commun. 2015, 33, 1612–1623. [Google Scholar]
- Zhang, S.; Tsonev, D.; Videv, S.; Ghosh, S.; Turnbull, G.A.; Samuel, I.D.W.; Haas, H. Organic solar cells as high-speed data detectors for visible light communication. Optica 2015, 2, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Fakidis, J.; Videv, S.; Helmers, H.; Haas, H. 0.5-Gb/s OFDM-Based Laser Data and Power Transfer Using a GaAs Photovoltaic cell. IEEE Photonics Technol. Lett. 2018, 30, 841–844. [Google Scholar] [CrossRef]
- Lashkari, A.H.; Danesh, M.M.S.; Samadi, B. A survey on wireless security protocols (WEP, WPA and WPA2/802.11i). In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 48–52. [Google Scholar] [CrossRef]
- Rana, F. Photodetectors and Solar Cells. In Semiconductor Optoelectronics; Rana, F., Ed.; Cornell University: Ithaca, NY, USA.
- Solar Technology International Ltd. 5 Watt Solar Panel Kit. Available online: https://www.solartechnology.co.uk/pv-logic/5w-solar-panel-kit (accessed on 9 January 2019).
- Fakidis, J.; Videv, S.; Kucera, S.; Claussen, H.; Haas, H. Indoor Optical Wireless Power Transfer to Small Cells at Nighttime. J. Lightwave Technol. 2016, 34, 3226–3258. [Google Scholar] [CrossRef]
- Bloom, S.; Korevaar, E.; Schuster, J.; Williebrand, H. Understanding the performance of free-space optics. J. Opt. Netw. 2003, 2, 178. [Google Scholar] [CrossRef]
- British Standards Institution. Safety of Laser Products. Equipment Classification and Requirements; BS EN 60825-1:2014; BSI: London, UK, 2014. [Google Scholar]
- OSRAM Opto Semiconductors GmbH. BIDOS®, PLPVQ 940A. Available online: https://www.osram.com/ecat/BIDOS%C2%AE%20PLPVQ%20940A/com/en/class_pim_web_catalog_103489/global/prd_pim_device_5062066/ (accessed on 6 February 2019).
- Texas Instruments Inc. BQ24650 High Efficiency Synchronous Switch-Mode Charger Controller—Solar battery charger. Available online: http://www.ti.com/product/BQ24650 (accessed on 25 March 2019).
- Matti Tukiainen. Sun Graph Edinburgh. GAISMA. 2005. Available online: https://www.gaisma.com/en/location/edinburgh.html (accessed on 12 July 2019).
- Greenstream Publishing Limited. Solar Irradiance. Solar Electricity Handbook. 2009. Available online: http://www.solarelectricityhandbook.com/solar-irradiance.html (accessed on 10 July 2019).
- Time and Date. Time and Date. 1995. Available online: https://www.timeanddate.com (accessed on 7 May 2009).
- Dugan, J.; Estabrook, J.; Ferbuson, J.; Gallatin, A.; Gates, M.; Gibbs, K.; Hemminger, S.; Jones, N.; Qin, F.; Renker, G.; et al. iPerf—The TCP, UDP and SCTP Network Bandwidth Measurement Tool. Available online: https://iperf.fr/ (accessed on 12 July 2019).
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
Incident Light (W) | Power Generated (W) | Power Delivered (W) |
---|---|---|
30.45 | 4.11 | 3.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Poves, E.; Fakidis, J.; Sparks, A.; Videv, S.; Haas, H. Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas. Energies 2019, 12, 3772. https://doi.org/10.3390/en12193772
Das S, Poves E, Fakidis J, Sparks A, Videv S, Haas H. Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas. Energies. 2019; 12(19):3772. https://doi.org/10.3390/en12193772
Chicago/Turabian StyleDas, Sovan, Enrique Poves, John Fakidis, Adrian Sparks, Stefan Videv, and Harald Haas. 2019. "Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas" Energies 12, no. 19: 3772. https://doi.org/10.3390/en12193772
APA StyleDas, S., Poves, E., Fakidis, J., Sparks, A., Videv, S., & Haas, H. (2019). Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas. Energies, 12(19), 3772. https://doi.org/10.3390/en12193772