Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rubber Seed Oil
2.3. Preparation of Nanomagnetic Catalysts
2.4. Additives
2.4.1. Lithium Additives (Li)
2.4.2. Aluminum Additives (Al)
2.5. Transesterification Process
2.6. Experimental Design and Optimization
2.7. FAME Analytical Method
2.8. Nanomagnetic Catalysts Characterization
3. Results and Discussion
3.1. Nanomagnetic Catalysts Properties
3.2. Response Surface Methodology Analysis
3.3. Comparison of Nanomagnetic Catalysts and Subcritical Methanol Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martchamadol, J.; Kumar, S. Thailand’s energy security indicators. Renew. Sustain. Energy Rev. 2012, 16, 6103–6122. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Refaat, A.A. Biodiesel production using solid metal oxide catalysts. Int. J. Environ. Sci. Technol. 2011, 8, 203–221. [Google Scholar] [CrossRef]
- Siriwardhana, M.; Opathella, G.K.C.; Jha, M.K. Bio-diesel: Initiatives, potential and prospects in Thailand: A review. Energy Policy 2009, 37, 554–559. [Google Scholar] [CrossRef]
- Takase, M.; Zhao, T.; Zhang, M.; Chen, Y.; Liu, H.; Yang, L.; Wu, X. An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew. Sustain. Energy Rev. 2015, 43, 495–520. [Google Scholar] [CrossRef]
- Alengaram, U.J.; Al Muhit, B.A.; bin Jumaat, M.Z. Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013, 38, 161–172. [Google Scholar] [CrossRef]
- Samart, C.; Karnjanakom, S.; Chaiya, C.; Reubroycharoen, P.; Sawangkeaw, R.; Charoenpanich, M. Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arabian J. Chem. 2015. [Google Scholar] [CrossRef]
- Gimbun, J.; Ali, S.; Kanwal, C.C.S.C.; Shah, L.A.; Muhamad, N.H.; Cheng, C.K.; Nurdin, S. Biodiesel Production from Rubber Seed Oil using Activated Cement Clinker as Catalyst. Procedia Eng. 2013, 53, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Wibowo, A.D.K. Study on Production Process of Biodiesel from Rubber Seed (Hevea Brasiliensis) by in Situ (Trans)Esterification Method with Acid Catalyst. Energy Procedia 2013, 32, 64–73. [Google Scholar]
- Morshed, M.; Ferdous, K.; Khan, M.R.; Mazumder, M.S.I.; Islam, M.A.; Uddin, M.T. Rubber seed oil as a potential source for biodiesel production in Bangladesh. Fuel 2011, 90, 2981–2986. [Google Scholar] [CrossRef]
- Mukherjee, I.; Sovacool, B.K. Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renew. Sustain. Energy Rev. 2014, 37, 1–12. [Google Scholar] [CrossRef]
- Ahmad, J.; Yusup, S.; Bokhari, A.; Kamil, R.N.M. Study of fuel properties of rubber seed oil based biodiesel. Energy Conver. Manag. 2014, 78, 266–275. [Google Scholar] [CrossRef]
- Roschat, W.; Siritanon, T.; Yoosuk, B.; Sudyoadsuk, T.; Promarak, V. Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renew. Energy 2017, 101, 937–944. [Google Scholar] [CrossRef]
- Liu, H.; Su, L.; Shao, Y.; Zou, L. Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst. Fuel 2012, 97, 651–657. [Google Scholar] [CrossRef]
- Reshad, A.S.; Tiwari, P.; Goud, V.V. Extraction of oil from rubber seeds for biodiesel application: Optimization of parameters. Fuel 2015, 150, 636–644. [Google Scholar] [CrossRef]
- Hu, S.; Guan, Y.; Wang, Y.; Han, H. Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Applied Energy 2011, 88, 2685–2690. [Google Scholar] [CrossRef]
- Bet-Moushoul, E.; Farhadi, K.; Mansourpanah, Y.; Nikbakht, A.M.; Molaei, R.; Forough, M. Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 2016, 164, 119–127. [Google Scholar] [CrossRef]
- Marwaha, A.; Rosha, P.; Mohapatra, S.K.; Mahla, S.K.; Dhir, A. Waste materials as potential catalysts for biodiesel production: Current state and future scope. Fuel Process. Technol. 2018, 181, 175–186. [Google Scholar] [CrossRef]
- Taufiq-Yap, Y.H.; Lee, H.V.; Hussein, M.Z.; Yunus, R. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenergy 2011, 35, 827–834. [Google Scholar] [CrossRef]
- Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Biodiesel production from crude Jatropha Curcas oil using calcium based mixed oxide catalysts. Fuel 2014, 136, 244–252. [Google Scholar] [CrossRef]
- Taufiq-Yap, Y.H.; Teo, S.H.; Rashid, U.; Islam, A.; Hussien, M.Z.; Lee, K.T. Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: Effect of stoichiometric composition. Energy Convers. Manag. 2014, 88, 1290–1296. [Google Scholar] [CrossRef]
- MacLeod, C.S.; Harvey, A.P.; Lee, A.F.; Wilson, K. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem. Eng. J. 2008, 135, 63–70. [Google Scholar] [CrossRef]
- Meher, L.C.; Dharmagadda, V.S.S.; Naik, S.N. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour. Technol. 2006, 97, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Wang, L.; Zhang, Y.; Li, S.; Tian, S.; Wang, B. Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification. Fuel Process. Technol. 2012, 95, 84–89. [Google Scholar] [CrossRef]
- Xie, W.; Peng, H.; Chen, L. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J. Mol. Catal. A Chem. 2006, 246, 24–32. [Google Scholar] [CrossRef]
- Sitthithanaboon, W.; Reddy, H.K.; Muppaneni, T.; Ponnusamy, S.; Punsuvon, V.; Holguim, F.; Dungan, B.; Deng, S. Single-step conversion of wet Nannochloropsis gaditana to biodiesel under subcritical methanol conditions. Fuel 2015, 147, 253–259. [Google Scholar] [CrossRef]
- Micic, R.D.; Tomić, M.D.; Kiss, F.E.; Nikolić-Djorić, E.B.; Simikić, M.Ð. Optimization of hydrolysis in subcritical water as a pretreatment step for biodiesel production by esterification in supercritical methanol. J. Supercrit. Fluids 2015, 103, 90–100. [Google Scholar] [CrossRef]
- Yin, J.-Z.; Ma, Z.; Shang, Z.-Y.; Hu, D.-P.; Xiu, Z.-L. Biodiesel production from soybean oil transesterification in subcritical methanol with K3PO4 as a catalyst. Fuel 2012, 93, 284–287. [Google Scholar] [CrossRef]
- Sánchez, N.; Encinar, J.M.; Martínez, G.; González, J.F. Biodiesel Production from Castor Oil under Subcritical Methanol Conditions. Int. J. Environ. Sci. Dev. 2015, 6, 61. [Google Scholar]
- Yin, J.-Z.; Ma, Z.; Hu, D.-P.; Xiu, Z.-L.; Wang, T.-H. Biodiesel Production from Subcritical Methanol Transesterification of Soybean Oil with Sodium Silicate. Energy Fuels 2010, 24, 3179–3182. [Google Scholar] [CrossRef]
- Edem, D.O. Palm oil: Biochemical, physiological, nutritional, hematological and toxicological aspects: A review. Plant Foods Hum. Nutr. 2002, 57, 319–341. [Google Scholar] [CrossRef] [PubMed]
- Jahirul, M.I.; Koh, W.; Brown, R.J.; Senadeera, W.; O’Hara, I.; Moghaddam, L. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum) Oil: Process Optimization Using Response Surface Methodology (RSM). Energies 2014, 7, 5317–5331. [Google Scholar] [CrossRef]
- Onumaegbu, C.; Alaswad, A.; Rodriguez, C.; Olabi, A.G. Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga. Energies 2018, 11, 806. [Google Scholar] [CrossRef]
- Bobadilla, M.C.; Martínez, R.F.; Lorza, R.L.; Gómez, F.S.; González, E.P.V. Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines. Energies 2018, 11, 2995. [Google Scholar] [CrossRef]
- Onoji, S.E.; Iyuke, S.E.; Igbafe, A.I.; Daramola, M.O. Transesterification of Rubber Seed Oil to Biodiesel over a Calcined Waste Rubber Seed Shell Catalyst: Modeling and Optimization of Process Variables. Energy Fuels 2017, 31, 6109–6119. [Google Scholar] [CrossRef]
- Betiku, E.; Etim, A.O.; Pereao, O.; Ojumu, T.V. Two-Step Conversion of Neem (Azadirachta indica) Seed Oil into Fatty Methyl Esters Using a Heterogeneous Biomass-Based Catalyst: An Example of Cocoa Pod Husk. Energy Fuels 2017, 31, 6182–6193. [Google Scholar] [CrossRef]
- Das, D.; Thakur, R.; Pradhan, A.K. Optimization of corona discharge process using Box–Behnken design of experiments. J. Electrostat. 2012, 70, 469–473. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Optimization of Hydrogen Production by Response Surface Methodology Using γ-Irradiated Sludge as Inoculum. Energy Fuels 2016, 30, 4096–4103. [Google Scholar] [CrossRef]
- Hebbar, H.R.H.; Math, M.C.; Yatish, K.V. Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy 2018, 143, 25–34. [Google Scholar] [CrossRef]
- Khazaai, S.N.M.; Maniam, G.P.; Rahim, M.H.A.; Yusoff, M.M.; Matsumura, Y. Review on methyl ester production from inedible rubber seed oil under various catalysts. Ind. Crop. Prod. 2017, 97, 191–195. [Google Scholar] [CrossRef]
- Mansir, N.; Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Efficient waste Gallus domesticus shell derived calcium-based catalyst for biodiesel production. Fuel 2018, 211, 67–75. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, C.; Wan, H.; Wang, L.; Li, Z.; Li, B.; Guo, Q.; Guan, G. Fabrication of Magnetic NH2-MIL-88B (Fe) Confined Brønsted Ionic Liquid as an Efficient Catalyst in Biodiesel Synthesis. Energy Fuels 2016, 30, 10739–10746. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Pan, C.; Fan, Y.; Hou, H. Optimization of Process Parameters for Directly Converting Raw Corn Stalk to Biohydrogen by Clostridium sp. FZ11 without Substrate Pretreatment. Energy Fuels 2015, 30, 311–317. [Google Scholar] [CrossRef]
- Rezayan, A.; Taghizadeh, M. Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Process Saf. Environ. Protect. 2018, 117, 711–721. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Aziz, A.R.A.; Sulaiman, N.M.N. The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem. 2013, 19, 14–26. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering. Ind. Eng. Chem. Res. 1999, 38, 4140–4143. [Google Scholar] [CrossRef]
- Encinar, J.M.; Pardal, A.; Martinez, G. Transesterification of rapeseed oil in subcritical methanol conditions. Fuel Process. Technol. 2012, 94, 40–46. [Google Scholar] [CrossRef]
- Go, A.W.; Nguyen, P.L.T.; Huynh, L.H.; Liu, Y.-T.; Sutanto, S.; Ju, Y.-H. Catalyst free esterification of fatty acids with methanol under subcritical condition. Energy 2014, 70, 393–400. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Deng, S. Transesterification of Camelina Sativa Oil using Supercritical and Subcritical Methanol with Cosolvents. Energy Fuels 2009, 24, 746–751. [Google Scholar] [CrossRef]
- Alonso, D.M.; Mariscal, R.; Granados, M.L.; Maireles-Torres, P. Biodiesel preparation using Li/CaO catalysts: Activation process and homogeneous contribution. Catal. Today 2009, 143, 167–171. [Google Scholar] [CrossRef]
- Kaur, M.; Ali, A. Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renew. Energy 2011, 36, 2866–2871. [Google Scholar] [CrossRef]
- Onoji, S.E.; Iyuke, S.E.; Igbafe, A.I.; Nkazi, D.B. Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa. Energy Convers. Manag. 2016, 110, 125–134. [Google Scholar] [CrossRef]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Biodiesel production from high FFA rubber seed oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Gimbun, J.; Ali, S.; Kanwal, C.; Shah, L.A.; Ghazali, N.H.M.; Cheng, C.K.; Nurdin, S. Biodiesel Production from Rubber Seed Oil Using A Limestone Based Catalyst. Adv. Mater. Phys. Chem. 2012, 2, 138–141. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Chong, W.T. Biodiesel Conversion from High FFA Crude Jatropha Curcas, Calophyllum Inophyllum and Ceiba Pentandra Oil. Energy Procedia 2014, 61, 480–483. [Google Scholar] [CrossRef]
- Berchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kumar, A.; Raheman, H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass Bioenergy 2007, 31, 569–575. [Google Scholar] [CrossRef]
Variable | Coded Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Molar ratio (X1, methanol:RSO) | 10:1 | 25:1 | 40:1 |
Amount of catalysts (X2, wt %) | 1.5 | 3 | 4.5 |
Reaction time in subcritical condition (X3, min) | 30 | 45 | 60 |
Nanomagnetic Catalyst | BET Surface Area (m2/g) | Pore Volume (cm3/g) | BJH Pore Size (nm) |
---|---|---|---|
CaO | 121.00 | 0.1351 | 3.79 |
KF/CaO-Fe3O4 | 27.84 | 0.0510 | 2.16 |
KF/CaO-Fe3O4-Li | 34.93 | 0.0308 | 2.15 |
KF/CaO-Fe3O4-Al | 95.70 | 0.1140 | 3.79 |
Variables | Molar Ratio | Catalyst Amount | Time | FAME Yield | ||||
---|---|---|---|---|---|---|---|---|
(unit) | (methanol:RSO) | (wt %) | (min) | (%) | ||||
Run | X1 | x1 | X2 | x2 | X3 | x3 | Experimental | Predicted |
1 | 10:1 | −1 | 1.5 | −1 | 45 | 0 | 72.11 | 70.87 |
2 | 40:1 | 1 | 1.5 | −1 | 45 | 0 | 78.51 | 78.64 |
3 | 10:1 | −1 | 4.5 | 1 | 45 | 0 | 50.89 | 50.77 |
4 | 40:1 | 1 | 4.5 | 1 | 45 | 0 | 72.26 | 73.50 |
5 | 10:1 | −1 | 3.0 | 0 | 30 | −1 | 60.54 | 60.22 |
6 | 40:1 | 1 | 3.0 | 0 | 30 | −1 | 77.27 | 75.58 |
7 | 10:1 | −1 | 3.0 | 0 | 60 | 1 | 46.41 | 48.10 |
8 | 40:1 | 1 | 3.0 | 0 | 60 | 1 | 62.92 | 63.24 |
9 | 25:1 | 0 | 1.5 | −1 | 30 | −1 | 71.59 | 73.15 |
10 | 25:1 | 0 | 4.5 | 1 | 30 | −1 | 81.20 | 81.65 |
11 | 25:1 | 0 | 1.5 | −1 | 60 | 1 | 82.48 | 82.03 |
12 | 25:1 | 0 | 4.5 | 1 | 60 | 1 | 49.87 | 48.31 |
13 | 25:1 | 0 | 3.0 | 0 | 45 | 0 | 83.32 | 81.15 |
14 | 25:1 | 0 | 3.0 | 0 | 45 | 0 | 81.01 | 81.15 |
15 | 25:1 | 0 | 3.0 | 0 | 45 | 0 | 79.13 | 81.15 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value Probability > F |
---|---|---|---|---|---|
Model | 2243.92 | 9 | 249.32 | 53.90 | 0.0002 |
X1 | 465.28 | 1 | 465.28 | 100.59 | 0.0002 |
X2 | 318.40 | 1 | 318.40 | 68.84 | 0.0004 |
X3 | 299.15 | 1 | 299.15 | 64.68 | 0.0005 |
X1X2 | 56.03 | 1 | 56.03 | 12.11 | 0.0177 |
X1X3 | 0.01 | 1 | 0.01 | 0.00 | 0.9612 |
X2X3 | 445.63 | 1 | 445.63 | 96.35 | 0.0002 |
X12 | 455.37 | 1 | 455.37 | 98.45 | 0.0002 |
X22 | 9.52 | 1 | 9.52 | 2.06 | 0.2109 |
X32 | 252.10 | 1 | 252.10 | 54.50 | 0.0007 |
Residual | 23.13 | 5 | 4.63 | ||
Lack of fit | 14.32 | 3 | 4.77 | 1.08 | 0.5129 |
Pure error | 8.81 | 2 | 4.40 | ||
SD | R2 | pred R2 | adj R2 | adeq precision | Mean |
2.15 | 0.9898 | 0.8902 | 0.9714 | 19.3251 | 69.97 |
Type of Catalyst | Biodiesel Source | Optimum Conditions | Reference | |||
---|---|---|---|---|---|---|
Molar Ratio (Methanol:RSO) | Catalyst Amount (wt %) | Time (min) | FAME Yield (%) | |||
KF/CaO-Fe3O4 | Rubber seed oil | 34:1 | 1.6 | 60 | 68.62 | This work |
KF/CaO-Fe3O4-Li | Rubber seed oil | 26:1 | 1.5 | 60 | 84.86 | This work |
KF/CaO-Fe3O4-Al | Rubber seed oil | 28:1 | 1.5 | 49 | 86.79 | This work |
KF/CaO-Fe3O4 | Stillingia oil | 12:1 | 4 | 180 | 95.0 | [16] |
Limestone based (CaO, SiO2, Al2O3, Fe2O3, MgO, SO3, K2O, Na2O, P2O5 and TiO2) | Rubber seed oil | 5:1 | 5 | 240 | 96.9 | [55] |
CaO/Li | Karanja oil | 12:1 | 2 | 480 | 94.9 | [23] |
CaMgO | Jatropha curcas | 15:1 | 4 | 360 | 83 | [19] |
CaZnO | Jatropha curcas | 15:1 | 4 | 360 | 81 | [19] |
CaO-NiO | Jatropha curcas | 15:1 | 5 | 360 | 86.3 | [20] |
CaO-Nd2O3 | Jatropha curcas | 15:1 | 5 | 360 | 82.2 | [20] |
CaO-La2O3 | Jatropha curcas | 24:1 | 4 | 360 | 86.5 | [21] |
CaO/Al/Fe3O4 | Rapeseed oil | 15:1 | 6 | 180 | 98.71 | [24] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winoto, V.; Yoswathana, N. Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil. Energies 2019, 12, 230. https://doi.org/10.3390/en12020230
Winoto V, Yoswathana N. Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil. Energies. 2019; 12(2):230. https://doi.org/10.3390/en12020230
Chicago/Turabian StyleWinoto, Veronica, and Nuttawan Yoswathana. 2019. "Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil" Energies 12, no. 2: 230. https://doi.org/10.3390/en12020230
APA StyleWinoto, V., & Yoswathana, N. (2019). Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil. Energies, 12(2), 230. https://doi.org/10.3390/en12020230