Accumulation Conditions and an Analysis of the Origins of Natural Gas in the Lower Silurian Shiniulan Formation from Well Anye 1, Northern Guizhou Province
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sample Selection
3.2. Organic Matter Properties
3.3. Parameterization of the Gas Content
3.3.1. Indirect Calculation of the Gas Content
3.3.2. USBM Direct Method
3.4. Original TOC and Hydrocarbon Potential
3.5. Natural Gas Geochemistry
3.6. Observation and Statistical Classification Method for Fractures
4. Results and Discussion
4.1. Organic Geochemical Bulk Parameters and the Hydrocarbon-Generative Source Rock
4.2. The Gas Content Measurement of Source Rock in the Shiniulan Formation
4.3. The Origin of Gas from the Siniulan Formation
4.4. Accumulation Factors and Natural Gas Accumulation Model of Shiniulan Formation
4.4.1. Accumulation factors of the natural gas from the Shiniulan Formation
4.4.2. Natural Gas Accumulation Model of Shiniulan Formation
5. Conclusions
- Combined with the gas contents by different methods above, it was indicated that the Shiniulan mudstone has a certain hydrocarbon generation potential; however, it is far from enough to satisfy the gas content in the reservoir.
- The origin of natural gas from the Shiniulan Fm. is a mixed source type. It can be considered that the gas source of the Shiniulan Fm. is not only derived from its own source rock but also migrated from other gas-source rock, such as the shale of the Wufeng–Longmaxi Fm.
- The diagenetic microfractures are well-developed, while the tectonic fractures formed by stress are rare. Moreover, the microfractures in the limestone are filled with calcite. This lithological association as a good element facilitates the accumulation of gas reservoirs.
- Due to the specific lithological association consisting of frequent calcareous mudstone and limestone interbedding, the limestone with low porosity and permeability and poorly developed fractures act as cap layers to restrain the natural gas from escaping to other layers and effectively seal the gas into well-developed fractures of mudstone.
- The development of local faults and high-angle microfractures provides a channel for the upward and downward migration of shale gas, allowing the abundant accumulation of natural gas in horizontal fractures developed in the mudstone of the Shiniulan Fm.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Fm | Formation |
USBM | United States Bureau of Mine |
References
- Jia, B.; Tsau, J.S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- U.S. Crude Oil and Natural Gas Proved Reserves. Year-End 2017. U.S.; Energy Information Administration (EIA): Washington, USA, 2017. [Google Scholar]
- Zhang, J.C.; Nie, H.K.; Xu, B.; Jiang, S.L.; Zhang, P.X.; Wang, Z.Y. Geological condition of shale gas accumulation in Sichuan Basin. Nat. Gas Ind. 2008, 28, 151–156. [Google Scholar]
- Zou, C.N.; Dong, D.Z.; Wang, S.J.; Li, J.Z.; Li, X.J.; Wang, Y.M.; Li, X.J.; Wang, Y.M.; Li, D.H.; Cheng, K.M. Geological characteristics and resource potential of shale gas in China. Pet. Exp. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, G.S.; Dong, D.Z.; Yang, G.; Lu, Z.G.; Xu, Y.H.; Huang, Y.B. Accumulation conditions and exploitation prospect of shale gas in the lower Paleozoic Sichuan Basin. Nat. Gas Ind. 2009, 29, 51–58. [Google Scholar]
- Tan, J.Q.; Weniger, P.; Krooss, B.; Merkel, A.; Horsfield, B.; Zhang, J.C. Shale gas potential of the major marine shale formations in the upper Yangtze platform, South China, Part II: Methane sorption capacity. Fuel 2014, 129, 204–218. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Yang, H.; Wang, Y.M.; Huang, J.L.; Wang, S.F.; Fu, C.X. Conditions of shale gas accumulation and exploration practices in China. Nat. Gas Ind. 2011, 31, 26–39. [Google Scholar]
- Han, S.B.; Zhang, J.C.; Li, Y.X.; Horsfield, B.; Tang, X.; Jiang, W.L.; Chen, Q. Evaluation of Lower Cambrian Shale in Northern Guizhou Province, South China: Implications for Shale Gas Potential. Energy Fuels 2013, 27, 2933–2941. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Li, J.Z.; Yang, T.; Wang, S.F.; Huang, J.L. Geological difference and its significance of marine shale gases in South China. Pet. Exp. Dev. 2016, 43, 547–559. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.C.; Zhang, P.; Liu, Z.Y.; Zhao, P.W.; Huang, H.; Mo, X.X. Origin and enrichment factors of natural gas from the Lower Silurian Songkan Formation in northern Guizhou province, south China. Int. J. Coal Geol. 2018, 187, 20–29. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, L.S.; Huang, J.L.; Li, X.J.; Li, D.H. Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region. Nat. Gas Ind. 2009, 29, 45–50. [Google Scholar]
- Liang, C.; Jiang, Z.X.; Zhang, C.M.; Guo, L.; Yang, Y.T.; Li, J. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale, Sichuan Basin, South China. J. Pet. Sci. Eng. 2014, 21, 636–648. [Google Scholar] [CrossRef]
- Wang, Z.H.; Tan, Q.G.; He, L.; Cheng, J.X.; Wang, R.H. Deposition and sequence stratigraphy of the Silurian Shiniulan Formation in southeastern Sichuan-northern Guizhou province. Oil Gas Geol. 2013, 34, 499–507. [Google Scholar]
- Supervision, G.A.O.Q. Determination of Total Organic Carbon in Sedimentary Rock; GB/T19145-2003; CHINESE GB Standards: Beijing, China, 2003. [Google Scholar]
- SY/T5124-1995. Method for Determining the Vitrinite Reflectance in the Sedimentary Rocks; China Petroleum Standardization Committee: Beijing, China, 1995. [Google Scholar]
- SY/T5125-1996. Identification and Classification Method of the Maceral Composition of Organic Matter Using Fluorescence-Fluorescent Light; China Petroleum Standardization Committee: Beijing, China, 1996. [Google Scholar]
- Cao, Q.Y. Identification of microcomponents and types of kerogen under transmitted light. Pet. Explor. Dev. 1985, 5, 14–23. [Google Scholar]
- Wang, X.; Gao, S.; Gao, C. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China. Pet. Exp. Dev. 2014, 41, 326–337. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.C.; Wei, X.L.; Tang, X.; Chen, Q.; Li, Z.M.; Zhang, M.C.; Liu, J. Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the Southern North China Basin, Central China: Experimental results and geological implications. J. Pet. Sci. Eng. 2017, 152, 456–470. [Google Scholar] [CrossRef]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Littke, R. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Milliken, K.; Qu, J.; Zhang, X. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.C.; Nie, H.K.; Wang, X.; Tang, X.; Wu, N.; Chen, Q.; Wei, X.L.; Wang, R. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Available online: https://www.sciencedirect.com/science/article/pii/S1385894719326038 (accessed on 23 October 2019).
- Sudibandriyo, M.; Pan, Z.J.; Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M. Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 k and pressures up to 13.6 mpa. Langmuir 2003, 19, 5323–5331. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Chem. Phys. 2015, 40, 1361–1403. [Google Scholar] [CrossRef]
- Lewis, R.; Ingraham, D.; Sawyer, W. New Evaluation Techniques for Gas Shale Reservoirs. Reserv. Symp. 2004, 2002, 1–11. [Google Scholar]
- Schlumberger. Log Interpretation Volume 1: Principles; Schlumberger Education Services: Huston, TX, USA, 1972. [Google Scholar]
- Diamond, W.; LaScola, J.; Hyman, D. Results of Direct-method Determination of the Gas Content of US Coalbeds; Bureau of Mines Information Circular: Pittsburgh, PA, USA, 1986. [Google Scholar]
- Yee, D.; Seidle, J.; Hanson, W. Gas sorption on coal and measurement of gas content. AAPG Stud. Geol. 1993, 38, 203–218. [Google Scholar]
- Diamond, W.; Schatzel, S. Measuring the gas content of coal: A review. Int. J. Coal Geol. 1998, 35, 311–331. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.C.; Tang, X.; Wei, X.L.; Li, Z.M.; Wang, C.H.; Chen, Q.; Liu, C. Investigation of gas content of organic-rich shale: A case study from Lower Permian shale in southern North China Basin, central China. Geosci. Front. 2018, 9, 559–575. [Google Scholar] [CrossRef]
- Behar, F.; Beaumont, V.; Penteado, H.D.B. Rock-Eval 6 technology: Performances and developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Ni, Y.Y.; Dai, J.X.; Zhu, G.Y.; Zhang, S.C.; Zhang, D.J.; Su, J.; Tao, X.W.; Liao, F.R.; Wu, W.; Gong, D.Y. Stable hydrogen and carbon isotopic ratios of coal-derived and oil-derived gases: A case study in the tarim basin, NW China. Int. J. Coal Geol. 2013, 116, 302–313. [Google Scholar] [CrossRef]
- Dai, J.X.; Zou, C.N.; Liao, S.M.; Dong, D.Z.; Ni, Y.Y.; Huang, J.L.; Wu, W.; Gong, D.Y.; Huang, S.P.; Hu, G.Y. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Dai, J.X.; Gong, D.Y.; Ni, Y.Y.; Huang, S.P.; Wu, W. Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China. Org. Geochem. 2014, 74, 123–142. [Google Scholar] [CrossRef]
- Boyer, C.; Kieschnick, J.; Suarez-Rivera, R.; Lewis, R.E.; Waters, G. Producing gas from its source. Oilfield Rev. 2006, 18, 36–49. [Google Scholar]
- Romero, A.M.; Philp, R.P. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: How variable can shales be? AAPG Bull. 2012, 96, 493–517. [Google Scholar] [CrossRef]
- Bowker, K.A. Barnett Shale gas production, Fort Worth Basin: Issues and discussion. Aapg Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Qin, J.; Zheng, L. Study on the restitution coefficient of original total organic carbon for high mature marine source rocks. Front. Earth Sci.-China 2007, 1, 482–490. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.C.; Tang, X.; Chen, Q.; Han, S.B.; Li, Z.M.; Du, X.R.; Wei, X.L.; Zhang, M.Q.; Liu, J. Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China: Characterization of organic geochemistry. J. Nat. Gas Sci. Eng. 2016, 28, 639–650. [Google Scholar] [CrossRef]
- Berner, U.; Faber, E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes. Org. Geochem. 1988, 13, 67–72. [Google Scholar] [CrossRef]
- Chung, H.M.; Gormly, J.R.; Squires, R.M. Origin of Gaseous Hydrocarbons in Subsurface Environment; Theoretical Considerations of Carbon Isotope Distribution. Chem. Geol. 1988, 71, 97–104. [Google Scholar] [CrossRef]
- Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 1980, 44, 649–661. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematic of microbial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Strąpoć, D.; Mastalerz, M.; Eble, C.; Schimmelmann, A. Characterization of the origin of coalbed gases in southeastern Illinois basin by compound-specific carbon and hydrogen stable isotope ratios. Org. Geochem. 2007, 38, 267–287. [Google Scholar] [CrossRef]
- Strąpoć, D.; Mastalerz, M.; Schimmelmann, A. Variability of geochemical properties in amicrobially dominated coalbed gas system from the eastern margin of the Illinois Basin, USA. Int. J. Coal Geol. 2008, 76, 98–110. [Google Scholar] [CrossRef]
- Galimov, E.M. 13C enrichment of methane during passage through rocks. Geochem. Int. USSR 1967, 4, 1180–1181. [Google Scholar]
- Colombo, U.; Gazzarrini, F.; Gonfiantini, R.; Tongiorgi, E.; Caflisch, L. Carbon Isotopic Study of Hydrocarbons in Italian Natural Gases. Adv. Org. Geochem. 1969, 43, 499–516. [Google Scholar]
- Stahl, W. Carbon isotope fractionations in natural gases. Nature 1974, 251, 134–135. [Google Scholar] [CrossRef]
- Schoell, M. Genetic Characterization of Natural Gases. AAPG Bull. 1983, 67, 2225–2238. [Google Scholar]
- Zhang, F.K.; Zhang, Y.G. Identification of carbon isotope method for natural gas. In Proceedings of the Organic Geochemistry, Beijing, China, 1 March 1987; Geological Publishing House: Beijing, China, 1987; pp. 1–14. [Google Scholar]
- Dai, J.X. Carbon and hydrogen isotopic compositions and origin identification of different types natural gas. Nat. Gas Geosci. 1993, 4, 1–40. [Google Scholar]
- Ding, W.J.; Hou, D.J.; Zhang, W.W.; He, D.S.; Cheng, X. A new genetic type of natural gases and origin analysis in Northern Songnan-Baodao Sag, Qiongdongnan Basin, South China Sea. J. Pet. Sci. Eng. 2018, 50, 384–398. [Google Scholar] [CrossRef]
- Dai, J.X.; Xia, X.Y.; Qin, S.F.; Zhao, J.Z. Causation of partly reversed orders of δ13C in biogenic alkane gas in China. Oil Gas J. 2003, 24, 1–6. [Google Scholar]
- Dai, J.X. Selected Works of Natural Gas Geology and Geochemistry: Vol. 2; Petroleum Industry Press: Beijing, China, 2000; p. 201. [Google Scholar]
- Dai, J.X.; Zou, C.N.; Dong, D.Z.; Ni, Y.Y.; Wu, W.; Gong, D.Y.; Wang, Y.M.; Huang, S.P.; Huang, J.L.; Fang, C.C.; et al. Geochemical characteristics of marine and terrestrial shale gas in China. Mar. Pet. Geol. 2016, 76, 444–463. [Google Scholar] [CrossRef]
Maceral (%) | Shiniulan Formation | Longmaxi Formation | |||||||
---|---|---|---|---|---|---|---|---|---|
AY-1-1 | AY-1-3 | AY-1-4 | AY-1-5 | AY-1-6 | AY-1-17 | AY-1-18 | AY-1-19 | AY-1-20 | |
Sapropelinite | 82 | 83 | 88 | 84 | 96 | 95 | 87 | 96 | 86 |
Liptinite | - | - | - | - | - | - | - | - | - |
Vitrinite | 17 | 16 | 10 | 15 | 3 | 2 | 9 | 3 | 8 |
Inertinite | 1 | 1 | 2 | 1 | 1 | 3 | 4 | 1 | 6 |
Type index | 68 | 70 | 78 | 71 | 93 | 91 | 76 | 93 | 74 |
Type | II1 | II1 | II1 | II1 | I | I | II1 | I | II1 |
Sample | Depth (m) | Formation | Measured Data | Calculated Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 (mgHC·g−1 Rock) | S2 (mgHC g−1 Rock) | TOC (wt%) | HIo (mgHC·g−1 Rock) | PIpd (%) | HI (mgHC·g−1Rock) | TRHI | TOCo (wt%) | S2o (mgHC·g−1 Rock) | QHC (mgHC·g−1 Rock) | Vre (cm3·g−1 Rock) | |||
AY-1-1 | 2110 | Shiniulan | 0.007 | 0.023 | 0.12 | 637 | 0.23 | 34.1 | 0.97 | 0.22 | 1.39 | 1.37 | 2.14 |
AY-1-2 | 2116 | Shiniulan | 0.017 | 0.037 | 0.11 | 643 | 0.31 | 98.7 | 0.92 | 0.21 | 1.38 | 1.34 | 2.11 |
AY-1-3 | 2118 | Shiniulan | 0.014 | 0.035 | 0.24 | 674 | 0.29 | 40.9 | 0.97 | 0.49 | 3.28 | 3.24 | 5.02 |
AY-1-6 | 2131 | Shiniulan | 0.012 | 0.022 | 0.16 | 649 | 0.35 | 17.4 | 0.99 | 0.33 | 2.14 | 2.11 | 3.27 |
AY-1-7 | 2156 | Shiniulan | 0.007 | 0.034 | 0.14 | 680 | 0.17 | 24.9 | 0.98 | 0.28 | 1.88 | 1.85 | 2.88 |
AY-1-18 | 2318 | Wufeng | 0.021 | 0.021 | 4.11 | 686 | 0.50 | 5.4 | 1.00 | 10.80 | 74.10 | 74.08 | 113.47 |
AY-1-23 | 2328 | Wufeng | 0.141 | 0.065 | 0.80 | 692 | 0.68 | 20.0 | 0.99 | 1.86 | 12.88 | 12.81 | 19.72 |
AY-1-24 | 2334 | Wufeng | 0.004 | 0.004 | 1.20 | 705 | 0.50 | 22.5 | 0.99 | 2.87 | 20.24 | 20.24 | 31.00 |
- (1)
- , and the % type is the percentages of kerogen macerals.
- (2)
- ; (83.33 is the mean number of hydrocarbons carbon). ;S2o = HIo-TOCo/100, mg HC·g−1 Rock; QHC = S2o − S2, mg HC·g−1 Rock.
- (3)
- Vre = (n × QHC)/MCH4, where n is molar volume of gas under the experimental environment with the temperature of 25 °C and the pressure of 1.01 × 105 Pa, 24.5 L/mol; MCH4 is the methane molar mass, 16 g·mol−1.
Adsorption Capacity under Different Pressures | Adsorption Constants | Depth (m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pressure (Mpa) | 0 | 0.35 | 1.07 | 2.25 | 4.31 | 5.25 | 6.24 | 8.72 | 11.13 | VL (m3·t−1) | PL (MPa) | V (m3·t−1) | |
Adsorbed gas (m3·t−1) | 0 | 0.16 | 0.33 | 0.45 | 0.47 | 0.48 | 0.51 | 0.55 | 0.57 | 0.63 | 1.10 | 0.56 | 2110 (AY-1-1) |
0 | 0.25 | 0.5 | 0.6 | 0.7 | 0.72 | 0.75 | 0.77 | 0.79 | 0.88 | 1.04 | 0.78 | 2120 (AY-1-5) | |
0 | 0.23 | 0.4 | 0.52 | 0.57 | 0.59 | 0.62 | 0.65 | 0.66 | 0.72 | 1.08 | 0.68 | 2131 (AY-1-6) | |
0 | 0.2 | 0.35 | 0.5 | 0.51 | 0.55 | 0.58 | 0.6 | 0.62 | 0.68 | 1.11 | 0.66 | 2156 (AY-1-7) |
Sample | Effective Porosity (%) | Gas Saturation (%) | Formation Pressure (MPa) | Density (g·cm−3) | Compressibility Factor | Formation Temperature (°C) | The Free Volume (m3·t−1) |
---|---|---|---|---|---|---|---|
AY-1-1 | 3.40 | 30 | 28.54 | 2.7 | 0.94 | 70.64 | 0.96 |
AY-1-3 | 3.50 | 67 | 28.64 | 2.7 | 0.95 | 70.83 | 2.12 |
AY-1-6 | 3.70 | 55 | 37.80 | 2.7 | 0.92 | 71.14 | 2.31 |
AY-1-7 | 3.90 | 36 | 41.62 | 2.7 | 0.93 | 71.74 | 1.95 |
AY-1-8 | 5.00 | 56 | 44.99 | 2.7 | 0.93 | 72.70 | 4.19 |
AY-1-9 | 5.10 | 62 | 44.56 | 2.7 | 0.93 | 72.73 | 4.70 |
AY-1-10 | 4.80 | 57 | 44.56 | 2.7 | 0.93 | 72.75 | 4.10 |
AY-1-11 | 4.10 | 65 | 44.56 | 2.7 | 0.93 | 72.78 | 3.96 |
AY-1-12 | 2.20 | 78 | 44.78 | 2.7 | 0.93 | 72.80 | 2.56 |
AY-1-13 | 2.30 | 45 | 44.78 | 2.7 | 0.93 | 72.82 | 1.50 |
AY-1-14 | 2.86 | 58 | 44.78 | 2.7 | 0.93 | 72.85 | 2.47 |
AY-1-15 | 4.66 | 49 | 44.78 | 2.7 | 0.93 | 72.88 | 3.40 |
AY-1-16 | 5.70 | 52 | 42.15 | 2.7 | 0.93 | 72.90 | 4.17 |
Sample | Depth(m) | TOC (%) | The Content of Free Gas (m3·t−1) | The Content of Adsorption Gas (m3·t−1) | Theoretical Gas Content (m3·t−1) |
---|---|---|---|---|---|
AY-1-1 | 2110 | 0.11 | 0.96 | 0.63 | 1.59 |
AY-1-4 | 2119 | 0.24 | 2.12 | 0.88 | 3.00 |
AY-1-6 | 2131 | 0.16 | 2.31 | 0.72 | 3.03 |
AY-1-7 | 2156 | 0.14 | 1.95 | 0.68 | 2.63 |
AY-1-8 | 2196 | 0.35 | 4.19 | 1.10 | 5.29 |
AY-1-9 | 2197 | 0.34 | 4.67 | 1.08 | 5.75 |
AY-1-10 | 2198 | 0.31 | 4.10 | 1.01 | 5.11 |
AY-1-11 | 2199 | 0.37 | 3.96 | 1.14 | 5.10 |
AY-1-12 | 2200 | 0.33 | 2.56 | 1.06 | 3.62 |
AY-1-13 | 2201 | 0.43 | 1.50 | 1.27 | 2.77 |
AY-1-14 | 2202 | 0.40 | 2.50 | 1.21 | 3.71 |
AY-1-15 | 2203 | 0.37 | 3.40 | 1.16 | 4.56 |
AY-1-16 | 2204 | 0.35 | 4.17 | 1.11 | 5.28 |
Sample | Depth (m) | Formation | Sample Weight (g) | Desorbed Gas Content (m3·t−1) | Lost Gas Content (m3·t−1) | Total Gas Content (m3·t−1) |
---|---|---|---|---|---|---|
B1-3 | 2107.99 | Shiniulan | 3580 | 0.556 | 0.053 | 0.609 |
1-3 (A3) | 2108.88 | Shiniulan | 3291 | 0.023 | 0.042 | 0.065 |
B1-2 | 2110.27 | Shiniulan | 3528 | 0.113 | 0.004 | 0.117 |
1-2 (A2) | 2111.97 | Shiniulan | 3778 | 0.032 | 0.140 | 0.172 |
B1-1 | 2113.56 | Shiniulan | 3438 | 0.104 | 0.038 | 0.142 |
1-1 (A1) | 2114.82 | Shiniulan | 3675 | 0.046 | 0.170 | 0.216 |
B2-1 | 2119.55 | Shiniulan | 3654 | 0.111 | 0.029 | 0.140 |
2-2 (A2) | 2119.55 | Shiniulan | 3639 | 0.057 | 0.114 | 0.171 |
B2-2 | 2121.98 | Shiniulan | 3428 | 0.154 | 0.027 | 0.181 |
2-1 (A1) | 2121.98 | Shiniulan | 3654 | 0.072 | 0.118 | 0.190 |
B3-3 | 2123.66 | Shiniulan | 2932 | 0.153 | 0.119 | 0.272 |
3-4 (A5) | 2123.98 | Shiniulan | 3720 | 0.070 | 0.134 | 0.204 |
3-3 (A3) | 2129.05 | Shiniulan | 3497 | 0.074 | 0.137 | 0.211 |
B3-2 | 2130.26 | Shiniulan | 3233 | 0.151 | 0.078 | 0.229 |
3-2 (A2) | 2133.45 | Shiniulan | 3746 | 0.069 | 0.178 | 0.247 |
B3-1 | 2135.43 | Shiniulan | 2586 | 0.190 | 0.107 | 0.297 |
3-1 (A1) | 2139.46 | Shiniulan | 3597 | 0.184 | 0.657 | 0.841 |
B4-2 | 2142.67 | Shiniulan | 3545 | 0.140 | 0.571 | 0.711 |
B4-1 | 2153.33 | Shiniulan | 2910 | 0.162 | 0.580 | 0.742 |
B5-3 | 2317.86 | Longmaxi | 1626 | 1.698 | 2.763 | 4.461 |
B5-2 | 2318.19 | Longmaxi | 1618 | 1.616 | 2.654 | 4.270 |
A4-1 | 2318.41 | Longmaxi | 1342 | 1.026 | 2.095 | 3.121 |
B5-1 | 2319.20 | Longmaxi | 1609 | 1.469 | 2.475 | 3.944 |
(A8-1) | 2319.70 | Longmaxi | 1255 | 1.596 | 3.512 | 5.108 |
B6-4 | 2320.57 | Longmaxi | 1548 | 0.728 | 3.267 | 3.995 |
(A3-1) | 2322.10 | Longmaxi | 1312 | 1.509 | 1.984 | 3.493 |
B6-3 | 2323.54 | Longmaxi | 1461 | 2.218 | 3.926 | 6.144 |
B6-5 | 2324.26 | Longmaxi | 1559 | 2.331 | 3.666 | 5.997 |
(A2-1) | 2325.92 | Wufeng | 1741 | 1.959 | 4.126 | 6.085 |
B6-2 | 2326.10 | Wufeng | 1364 | 1.222 | 5.005 | 6.227 |
B6-1 | 2327.11 | Wufeng | 1476 | 1.484 | 2.385 | 3.869 |
(A8-2) | 2329.04 | Wufeng | 1337 | 1.035 | 1.247 | 2.282 |
B7-2 | 2329.66 | Wufeng | 1496 | 0.996 | 1.630 | 2.626 |
(A7-1) | 2331.04 | Wufeng | 1753 | 0.800 | 1.377 | 2.177 |
B7-1 | 2331.36 | Wufeng | 1471 | 1.331 | 1.963 | 3.294 |
Sample | Strata | Gas Composition (%) | δ13C(‰)VPDB | δ2H(‰)VSMOW | |||||
---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | CO2 | CH4 | C2H6 | CO2 | CH4 | ||
1 | S1s | 96.289 | 2.067 | 0.139 | 0.795 | −33.6 | −36.8 | −18.6 | −149 |
2 | S1s | 95.375 | 2.041 | 0.126 | 0.864 | −33.6 | −36.9 | −18.1 | −156.6 |
3 | S1s | 96.432 | 2.082 | 0.143 | 0.709 | −33.2 | −37.0 | −17.6 | −145.8 |
4 | S1s | 96.276 | 2.058 | 0.132 | 0.798 | −33.5 | −36.8 | — | — |
5 | S1s | 95.244 | 2.042 | 0.124 | 0.864 | −33.9 | −36.5 | — | — |
6 | S1s | 95.682 | 2.063 | 0.127 | 0.823 | −33.4 | −36.8 | — | — |
7 | S1s | 96.278 | 2.053 | 0.134 | 0.805 | −33.4 | −36.6 | — | — |
8 | S1s | 96.258 | 2.049 | 0.128 | 0.821 | −33.3 | −36.5 | — | — |
9 | S1s | 96.274 | 2.052 | 0.132 | 0.812 | −33.9 | −36.8 | −20.8 | −150 |
10 | S1s | 95.874 | 2.065 | 0.131 | 0.818 | −33.2 | −36.2 | −20.6 | −153.9 |
11 | S1s | 95.946 | 2.066 | 0.134 | 0.806 | −33.5 | −37.0 | −19.4 | −146 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Zhang, J.; Zhao, P.; Tang, X.; Liu, Z. Accumulation Conditions and an Analysis of the Origins of Natural Gas in the Lower Silurian Shiniulan Formation from Well Anye 1, Northern Guizhou Province. Energies 2019, 12, 4087. https://doi.org/10.3390/en12214087
Guo R, Zhang J, Zhao P, Tang X, Liu Z. Accumulation Conditions and an Analysis of the Origins of Natural Gas in the Lower Silurian Shiniulan Formation from Well Anye 1, Northern Guizhou Province. Energies. 2019; 12(21):4087. https://doi.org/10.3390/en12214087
Chicago/Turabian StyleGuo, Ruibo, Jinchuan Zhang, Panwang Zhao, Xuan Tang, and Ziyi Liu. 2019. "Accumulation Conditions and an Analysis of the Origins of Natural Gas in the Lower Silurian Shiniulan Formation from Well Anye 1, Northern Guizhou Province" Energies 12, no. 21: 4087. https://doi.org/10.3390/en12214087
APA StyleGuo, R., Zhang, J., Zhao, P., Tang, X., & Liu, Z. (2019). Accumulation Conditions and an Analysis of the Origins of Natural Gas in the Lower Silurian Shiniulan Formation from Well Anye 1, Northern Guizhou Province. Energies, 12(21), 4087. https://doi.org/10.3390/en12214087