Role of Shearing Dispersion and Stripping in Wax Deposition in Crude Oil Pipelines
Abstract
:1. Introduction
2. Model Development
2.1. Modeling of Wax Deposition
2.2. Modeling of Shearing Flux
3. Experiments
3.1. Experimental Materials
3.2. Experimental Setup and Procedure
3.2.1. Thermal Analysis Experiments
3.2.2. Flow Loop Experiments
3.2.3. Cold Finger Experiments
4. Results and Discussion
4.1. Prediction of Wax Deposition Rate
4.1.1. Flow and Deposition Behavior
4.1.2. Effect of Oil Flow Temperatures on Wax Deposition
4.1.3. Effect of Oil Flow Rates on Wax Deposition
4.2. The Role of Shearing Mechanism to Wax Deposition
4.2.1. Shearing Dispersion Coefficient
4.2.2. Correction Coefficient
4.2.3. Effect of Oil Flow Temperature on Shearing Mechanisms to Wax Deposition
4.2.4. Effect of Flow Rate on Shearing Mechanisms to Wax Deposition
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
= internal surface area of pipeline, m2 |
= wax concentration, % |
= diffusion coefficient of wax in oil, m2/s |
= shearing energy, J |
= wax content of/in wax deposits, % |
= convective flux, kg/(m2·s) |
= shear flux, kg/(m2·s) |
= shearing dispersion flux, kg/(m2·s) |
= shear stripping flux, kg/(m2·s) |
= diffusive flux, kg/(m2·s) |
= pipeline length, m |
= pressure drop, Pa |
= average rising rate of pressure drop gradient, Pa/(m·h) |
= volume flow rate, 10−5 m3/s |
= inner radius of pipeline, m |
= distance from the pipe center to the surface of deposits, m |
= volume concentration of wax crystals on the deposits surface, equivalent to , % |
= temperature, K |
= formation time of deposits, hr |
= flow time for the maximum pressure drop, hr |
= molar volume of the wax, valued as 435, cm3/mol |
= density of deposits, kg/m3 |
= density of wax, kg/m3 |
= viscosity of waxy crude oil, Pa.s |
= shearing coefficient |
= aspect ratio of wax crystals |
Appendix A
References
- Liu, Y.; Chen, S.; Guan, B.; Xu, P. Layout optimization of large-scale oil-gas gathering system based on combined optimization strategy. Neurocomputing 2019, 332, 159–183. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, Y.; Zhang, H.; Liu, Y. Investigation on gelation nucleation kinetics of waxy crude oil emulsions by their thermal behavior. J. Pet. Sci. Eng. 2019, 181, 106230. [Google Scholar] [CrossRef]
- Rui, Z.; Peng, F.; Ling, K.; Chang, H.; Chen, G.; Zhou, X. Investigation into the performance of oil and gas projects. J. Nat. Gas Sci. Eng. 2017, 38, 12–20. [Google Scholar] [CrossRef]
- Wu, X.; Pu, H.; Zhu, K.; Lu, S. Formation damage mechanisms and protection technology for Nanpu nearshore tight gas reservoir. J. Pet. Sci. Eng. 2017, 158, 509–515. [Google Scholar] [CrossRef]
- Leporini, M.; Marchetti, B.; Corvaro, F.; Polonara, F. Reconversion of offshore oil and gas platforms into renewable energy sites production: Assessment of different scenarios. Renew. Energy Int. J. 2019, 135, 1121–1132. [Google Scholar] [CrossRef]
- Venkatesan, R.; Nagarajan, N.R.; Paso, K.; Yi, Y.B.; Sastry, A.M.; Fogler, S.H. The strength of paraffin gels formed under static and flow conditions. Chem. Eng. Sci. 2005, 60, 3587–3598. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Shafiei, A.; Bahadori, A.; James, L.A.; Elkamel, A.; Lohi, A. Asphaltene precipitation and deposition in oil reservoirs technical aspects, experimental and hybrid neural network predictive tools. Chem. Eng. Res. Des. 2014, 92, 857–875. [Google Scholar] [CrossRef]
- Mendell, J.L.; Jessen, F.W. Paraffin inhibition and flow improvement in crude oil system. J. Can. Pet. Technol. 1972, 11, 60–66. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Q.; Zheng, H.; Li, S.; Long, Z.; Wang, Q. Investigation of wax deposition and effective diffusion coefficient in water-in-oil emulsion system. J. Therm. Anal. Calorim. 2018, 134, 1031–1043. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Y.; Zhang, J. Unified wax deposition model. Acta Pet. Sin. 2008, 29, 459–462. [Google Scholar]
- Bern, P.A.; Withers, V.R.; Cairns, J.R. Wax deposition in crude oil pipeline. In Proceedings of the European Offshore Petroleum Conference, London, UK, 21–24 October 1980. [Google Scholar]
- Correra, S.; Fasano, A.; Fusi, L.; Merino-Garcia, D. Calculating deposit formation in the pipelining of waxy crude oils. Meccanica 2007, 42, 149–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, J.; Ren, Y.; Wang, P. Effect of emulsion characteristics on wax deposition from water-in-waxy crude oil emulsions under static cooling conditions. Energy Fuels 2010, 24, 1146–1155. [Google Scholar] [CrossRef]
- Miao, Q.; Jiang, B.; Tao, J.; Hu, S.; Liu, J. A model for predicting the average hydraulic wax deposition thickness of a long-term unpigged crude pipeline. In Proceedings of the ASME International Pipeline Conference, Calgary, AB, Canada, 27 September–1 October 2010; pp. 345–349. [Google Scholar]
- Zhou, Y.; Gong, J.; Wang, P. Modeling of wax deposition for water-in-oil dispersed flow. Asia-Pac. J. Chem. Eng. 2016, 11, 108–117. [Google Scholar] [CrossRef]
- Azevedo, L.F.A.; Teixeira, A.M. A critical review of the modeling of wax deposition mechanisms. Pet. Sci. Technol. 2003, 21, 393–408. [Google Scholar] [CrossRef]
- Burger, E.D.; Perkins, T.K.; Striegler, J.H. Studies of wax deposition in the Trans Alaska pipeline. J. Pet. Technol. 1981, 33, 1075–1086. [Google Scholar] [CrossRef]
- Hamouda, A.A.; Ravnoy, J.M. Prediction of wax deposition in pipelines and field experience on the influence of wax on drag reducer performance. In Proceedings of the 24th Annual OTC, Houston, TX, USA, 4–7 May 1992. [Google Scholar]
- Majeed, A.; Bringedal, B.; Overa, S. Model calculates wax deposition for N. Sea oils. Oil Gas J. 1990, 88, 63–69. [Google Scholar]
- Huang, Z.Y.; Michal, S.; Ravi, K.; Fogler, S.H. Wax deposition modeling of oil/water stratified channel flow. AIChE J. 2011, 57, 841–851. [Google Scholar] [CrossRef]
- Nazar, A.R.S.; Dabir, B.; Islam, M.R. Experimental and mathematical modeling of wax deposition and propagation in pipes transporting crude oil. Energy Sour. 2007, 27, 185–207. [Google Scholar] [CrossRef]
- Zougari, M.I. Shear driven crude oil wax deposition evaluation. J. Pet. Sci. Eng. 2010, 70, 28–34. [Google Scholar] [CrossRef]
- Zheng, S.; Fogler, S.H. Fundamental investigation of wax diffusion characteristics in water-in-oil emulsion. Ind. Eng. Chem. Res. 2015, 54, 4420–4428. [Google Scholar] [CrossRef]
- Couto, G.H.; Chen, H.; Dellecase, E.; Sarica, C.; Volk, M. An investigation of two-phase oil/water paraffin deposition. SPE Prod. Oper. 2008, 23, 49–55. [Google Scholar] [CrossRef]
- Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Corvaro, F. Experiences in numerical simulation of wax deposition in oil and multiphase pipelines: Theory versus reality. J. Pet. Sci. Eng. 2019, 174, 997–1008. [Google Scholar] [CrossRef]
- Leporini, M.; Terenzi, A.; Marchetti, B.; Corvaro, F.; Polonara, F. On the numerical simulation of sand transport in liquid and multiphase pipelines. J. Pet. Sci. Eng. 2019, 175, 519–535. [Google Scholar] [CrossRef]
- Giacchetta, G.; Leporini, M.; Marchetti, B.; Terenzi, A. Numerical study of choked two-phase flow of hydrocarbons fluids through orifices. J. Loss Prev. Process Ind. 2014, 27, 13–20. [Google Scholar] [CrossRef]
- Singh, P.; Venkatesan, R.; Fogler, S.H. Formation and aging of incipient thin film wax-oil gels. Aiche J. 2000, 46, 1059–1074. [Google Scholar] [CrossRef]
- Pal, R. Rheology of simple and multiple emulsions. Curr. Opin. Colloid Interface Sci. 2011, 16, 41–60. [Google Scholar] [CrossRef]
- Bruno, A.; Sarica, C.; Chen, H.; Volk, M. Paraffin deposition during the flow of water-in-oil and oil-in-water dispersions in pipes. In Proceedings of the SPE Annual Technical Conference and Exhibition, SPE-114747, Denver, CO, USA, 21–24 September 2008. [Google Scholar]
- Trallero, J.L.; Sarica, C.; Brill, J.P. A study of oil-water flow patterns in horizontal pipes. SPE Prod. Oper. 1997, 12, 165–172. [Google Scholar] [CrossRef]
- Li, R.; Huang, Q.; Huo, F.; Fan, K.; Li, W.; Zhang, D. Effect of shear on the thickness of wax deposit under laminar flow regime. J. Pet. Sci. Eng. 2019, 181, 106212. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Li, J.; Zhuge, X.; Zhang, L. Study on two-phase oil-water gelling deposition behavior in low-temperature transportation. Energy Fuels 2016, 30, 4570–4582. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Yu, T.; Zhou, N.; Zhong, H.; Zhu, J. Formation and rupture mechanisms of visco-elastic interfacial films in polymer-stabilized emulsions. J. Dispers. Sci. Technol. 2019, 40, 612–626. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Hua, M.; Zhang, Y.; Shi, X. Characterization of effluent organic matter from different coking wastewater treatment plants. Chem. Environ. Toxicol. Risk Assess. 2018, 203, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Metzner, A.B.; Reed, J.C. Flow of non-newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions. Am. Inst. Chem. Eng. 1955, 1, 434–440. [Google Scholar] [CrossRef]
Item | Experimental Parameters | Test Results | |||
---|---|---|---|---|---|
Ambient Temperature, °C | Oil Temperature, °C | Flow Rate, t/d | Maximum Pressure Drop, kPa | Flow Time, h | |
Pressure drop data in flow loops experiment | 12 | 38 | 85 | 3.505 | 1.6 |
42 | 20 | 3.637 | 1.3 | ||
50 | 3.480 | 2.6 | |||
85 | 3.312 | 3.0 | |||
120 | 2.624 | 4.2 | |||
46 | 85 | 2.530 | 5.5 | ||
−4 | 38 | 85 | 3.616 | 1.0 | |
42 | 20 | 3.804 | 0.8 | ||
50 | 3.519 | 1.2 | |||
85 | 3.340 | 1.6 | |||
120 | 2.607 | 2.3 | |||
46 | 85 | 2.640 | 3.2 | ||
Pressure drop data under the condition of equivalent diffusion | 28 | 38 | 25 | 4.117 | 0.75 |
32 | 42 | 5 | 3.910 | 0.85 | |
36 | 46 | 5 | 3.624 | 1.25 |
Experimental Parameters | Test Results | |||
---|---|---|---|---|
Test cup inner Wall Temperature °C | Temperature Difference °C | Shearing Parameters of Flow Field | Wax Deposition Rate, g/(m2·h) | |
Stirring Shearing Rate, 1/s | Equivalent Velocity, m/s | |||
38 | 10 | 0 | 0 | 165.33 |
10.63 | 0.104 | 190.06 | ||
42 | 10 | 0 | 0 | 141.57 |
12.06 | 0.021 | 162.24 | ||
46 | 10 | 0 | 0 | 113.46 |
19.64 | 0.021 | 130.01 |
38 °C | 42 °C | 46 °C | |||
---|---|---|---|---|---|
Critical Flow Rate, t/d | Reynolds Number | Critical Flow Rate, t/d | Reynolds Number | Critical Flow Rate, t/d | Reynolds Number |
25 | 0.92 | 5 | 1.42 | 5 | 2.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xu, Y.; Zhao, Y.; Li, Z.; Liu, Y.; Hong, J. Role of Shearing Dispersion and Stripping in Wax Deposition in Crude Oil Pipelines. Energies 2019, 12, 4325. https://doi.org/10.3390/en12224325
Wang Z, Xu Y, Zhao Y, Li Z, Liu Y, Hong J. Role of Shearing Dispersion and Stripping in Wax Deposition in Crude Oil Pipelines. Energies. 2019; 12(22):4325. https://doi.org/10.3390/en12224325
Chicago/Turabian StyleWang, Zhihua, Yunfei Xu, Yi Zhao, Zhimin Li, Yang Liu, and Jiajun Hong. 2019. "Role of Shearing Dispersion and Stripping in Wax Deposition in Crude Oil Pipelines" Energies 12, no. 22: 4325. https://doi.org/10.3390/en12224325
APA StyleWang, Z., Xu, Y., Zhao, Y., Li, Z., Liu, Y., & Hong, J. (2019). Role of Shearing Dispersion and Stripping in Wax Deposition in Crude Oil Pipelines. Energies, 12(22), 4325. https://doi.org/10.3390/en12224325