Deformation Effect on Water Transport through Nanotubes
Abstract
:1. Introduction
2. Simulation Details
2.1. Computational Domain and Structures
2.2. Computational Methods
3. Results and Analyses
3.1. Free Energy of Occupancy Fluctuations and Water Occupancy
3.2. Flux and Diffusion
3.3. The Hydrogen Bonding
3.4. Friction Force and Trajectory
3.5. Radial Distribution Function and Potential of Mean Force
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Rubio, A.; Corkill, J.L.; Cohen, M.L. Theory of graphitic boron nitride nanotubes. Phys. Rev. B 1994, 49, 5081–5084. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966. [Google Scholar] [CrossRef]
- Hummer, G.; Rasaiah, J.C.; Noworyta, J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190. [Google Scholar] [CrossRef]
- He, J.-X.; Lu, H.-J.; Liu, Y.; Wu, F.-M.; Nie, X.-C.; Zhou, X.-Y.; Chen, Y.-Y. Asymmetry of the water flux induced by the deformation of a nanotube. Chin. Phys. B 2012, 21, 054703. [Google Scholar] [CrossRef]
- Feng, J.; Chen, P.; Zheng, D.; Zhong, W. Transport diffusion in deformed carbon nanotubes. Phys. A Stat. Mech. Appl. 2018, 493, 155–161. [Google Scholar] [CrossRef]
- Amiri, H.; Shepard, K.L.; Nuckolls, C.; Hernández Sánchez, R. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels. Nano Lett. 2017, 17, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, X.; Li, B.; Xu, B.; Zhao, Y. Carbon Nanotube Based Artificial Water Channel Protein: Membrane Perturbation and Water Transportation. Nano Lett. 2009, 9, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Li, J.; Lu, H.; Wan, R.; Li, J.; Hu, J.; Fang, H. A charge-driven molecular water pump. Nat. Nanotechnol. 2007, 2, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Li, J.; Lu, H.; Fang, H. Controllable Water Channel Gating of Nanometer Dimensions. J. Am. Chem. Soc. 2005, 127, 7166–7170. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, X.; Lu, H.; Li, D.; Fang, H.; Zhou, R. Electrostatic gating of a nanometer water channel. Proc. Natl. Acad. Sci. USA 2007, 104, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.; Garde, S.; Hummer, G. Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA 2003, 100, 10175–10180. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Schulten, K. Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels. Biophys. J. 2003, 85, 236–244. [Google Scholar] [CrossRef]
- Todorov, I.T.; Smith, W.; Trachenko, K.; Dove, M.T. DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 2006, 16, 1911–1918. [Google Scholar] [CrossRef]
- Bush, I.J.; Todorov, I.T.; Smith, W. A DAFT DL_POLY11URL distributed memory adaptation of the Smoothed Particle Mesh Ewald method. Comput. Phys. Commun. 2006, 175, 323–329. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Zhu, F.; Tajkhorshid, E.; Schulten, K. Theory and simulation of water permeation in aquaporin-1. Biophys. J. 2004, 86, 50–57. [Google Scholar] [CrossRef]
- Werder, T.; Walther, J.H.; Jaffe, R.L.; Halicioglu, T.; Koumoutsakos, P. On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 1345–1352. [Google Scholar] [CrossRef]
- Raghunathan, A.V.; Park, J.H.; Aluru, N.R. Interatomic potential-based semiclassical theory for Lennard-Jones fluids. J. Chem. Phys. 2007, 127, 174701. [Google Scholar] [CrossRef]
- Tang, D.; Li, L.; Shahbabaei, M.; Yoo, Y.-E.; Kim, D. Molecular Dynamics Simulation of the Effect of Angle Variation on Water Permeability through Hourglass-Shaped Nanopores. Materials 2015, 8, 7257–7268. [Google Scholar] [CrossRef]
- Won, C.Y.; Aluru, N.R. Water Permeation through a Subnanometer Boron Nitride Nanotube. J. Am. Chem. Soc. 2007, 129, 2748–2749. [Google Scholar] [CrossRef] [PubMed]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Shahbabaei, M.; Kim, D. Molecular Dynamics Simulation of Water Transport Mechanisms through Nanoporous Boron Nitride and Graphene Multilayers. J. Phys. Chem. B 2017, 121, 4137–4144. [Google Scholar] [CrossRef] [PubMed]
- Shahbabaei, M.; Kim, D. Effect of hourglass-shaped nanopore length on osmotic water transport. Chem. Phys. 2016, 477, 24–31. [Google Scholar] [CrossRef]
- Barati Farimani, A.; Aluru, N.R. Spatial Diffusion of Water in Carbon Nanotubes: From Fickian to Ballistic Motion. J. Phys. Chem. B 2011, 115, 12145–12149. [Google Scholar] [CrossRef] [PubMed]
- Hilder, T.A.; Gordon, D.; Chung, S.-H. Salt Rejection and Water Transport Through Boron Nitride Nanotubes. Small 2009, 5, 2183–2190. [Google Scholar] [CrossRef]
- Corry, B. Designing Carbon Nanotube Membranes for Efficient Water Desalination. J. Phys. Chem. B 2008, 112, 1427–1434. [Google Scholar] [CrossRef]
- Mendonça, B.H.S.; de Freitas, D.N.; Köhler, M.H.; Batista, R.J.C.; Barbosa, M.C.; de Oliveira, A.B. Diffusion behaviour of water confined in deformed carbon nanotubes. Phys. A Stat. Mech. Appl. 2019, 517, 491–498. [Google Scholar] [CrossRef]
- Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R.R.; Bocquet, L. Ultralow Liquid/Solid Friction in Carbon Nanotubes: Comprehensive Theory for Alcohols, Alkanes, OMCTS, and Water. Langmuir 2012, 28, 14261–14272. [Google Scholar] [CrossRef]
- Won, C.Y.; Joseph, S.; Aluru, N.R. Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J. Chem. Phys. 2006, 125, 114701. [Google Scholar] [CrossRef] [Green Version]
Nanotube Type | Distortion Type | Major Axis Value (Å) | Minor Axis Value (Å) | Radius (Å) |
---|---|---|---|---|
CNT | Perfect NT | - | - | 4.068 |
CNT | Screw Distortion 15 | - | - | 4.068 |
CNT | Screw Distortion 30 | - | - | 4.068 |
CNT | Screw Distortion 45 | - | - | 4.068 |
CNT | XY-distortion 2 | 10.560 | 6.277 | - |
CNT | XY-distortion 4 | 11.928 | 5.557 | - |
CNT | XY-distortion 6 | 12.331 | 5.376 | - |
CNT | Z-distortion 0.9 | - | - | 4.068 |
CNT | Z-distortion 1.1 | - | - | 4.068 |
CNT | Z-distortion 1.2 | - | - | 4.068 |
BNNT | Perfect NT | - | - | 4.211 |
BNNT | Screw Distortion 15 | - | - | 4.211 |
BNNT | Screw Distortion 30 | - | - | 4.211 |
BNNT | Screw Distortion 45 | - | - | 4.211 |
BNNT | XY-distortion 2 | 11.217 | 6.494 | - |
BNNT | XY-distortion 4 | 12.599 | 5.749 | - |
BNNT | XY-distortion 6 | 13.008 | 5.561 | - |
BNNT | Z-distortion 0.9 | - | - | 4.211 |
BNNT | Z-distortion 1.1 | - | - | 4.211 |
BNNT | Z-distortion 1.2 | - | - | 4.211 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinson, F.; Shahbabaei, M.; Kim, D. Deformation Effect on Water Transport through Nanotubes. Energies 2019, 12, 4424. https://doi.org/10.3390/en12234424
Robinson F, Shahbabaei M, Kim D. Deformation Effect on Water Transport through Nanotubes. Energies. 2019; 12(23):4424. https://doi.org/10.3390/en12234424
Chicago/Turabian StyleRobinson, Ferlin, Majid Shahbabaei, and Daejoong Kim. 2019. "Deformation Effect on Water Transport through Nanotubes" Energies 12, no. 23: 4424. https://doi.org/10.3390/en12234424
APA StyleRobinson, F., Shahbabaei, M., & Kim, D. (2019). Deformation Effect on Water Transport through Nanotubes. Energies, 12(23), 4424. https://doi.org/10.3390/en12234424