Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT
Abstract
:1. Introduction
- Negative power supply to avoid crosstalk in half-brige configuration;
- A low impedance path for faster turn-off and suppression of crosstalk;
- A small gate loop inductance to reduce the gate-source voltage ringing, especially the common source inductance (the trace shared by gate driver and power loops) should be minimized to reduce the interference between the two loops;
- A small power loop inductance to reduce the ringings of drain-source voltage and drain current with the low-ESL (equivalent stray inductance) decoupling capacitance placed as close as possible.
2. Circuit Design and Analysis
2.1. Gate Driver
2.2. Desaturation Protection Circuit
2.3. Over-Voltage Protection Circuit
3. Device Comparison
4. Experimental Setup
4.1. Double Pulse Test Experiment
4.2. Hard Switching Fault Experiment
5. Results and Discussion
5.1. Impact of Gate Resistance
5.2. Short-Circuit Test
5.3. Protection Circuit Test
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohan, N.; Undeland, T.M. Power Electronics: Converters, Applications, and Design; John Wiley & Sons: Hoboken, NY, USA, 2007. [Google Scholar]
- Volke, A.; Hornkamp, M. IGBT Modules: Technologies, Driver and Application; Infineon Technologies AG: Neubiberg, Germany, 2011. [Google Scholar]
- Baliga, B.J. Power Semiconductor Devices; PWS Publishing Company: Devon, UK, 1996. [Google Scholar]
- Zhang, L.; Yuan, X.; Wu, X.; Shi, C.; Zhang, J.; Zhang, Y. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Trans. Power Electron. 2019, 34, 1181–1196. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, D.; Li, M.; Ning, P.; Wang, F.; Liang, Z. Development of Si IGBT phase-leg modules for operation at 200 °C in hybrid electric vehicle applications. IEEE Trans. Power Electron. 2013, 28, 5557–5567. [Google Scholar] [CrossRef]
- Brando, G.; Dannier, A.; Del Pizzo, A.; Coppola, M. An all-electric-aircraft tailored SiC-based power factor correction converter with adaptive DC-link regulator. Energies 2017, 10, 1227. [Google Scholar] [CrossRef]
- Yin, S.; Tseng, K.; Simanjorang, R.; Liu, Y.; Pou, J. A 50-kW high-frequency and high-efficiency SiC voltage source inverter for more electric aircraft. IEEE Trans. Ind. Electron. 2017, 64, 9124–9134. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, C.M. LCL filter design with EMI noise consideration for grid-connected inverter. Energies 2018, 11, 1646. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Tolbert, L.M.; Blalock, B.J. Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration. IEEE Trans. Power Electron. 2014, 29, 1986–1997. [Google Scholar] [CrossRef]
- Yin, S.; Tseng, K.; Simanjorang, R.; Tu, P. Experimental comparison of high-speed gate driver design for 1.2-kV/120-A Si IGBT and SiC MOSFET modules. IET Power Electron. 2017, 10, 979–986. [Google Scholar] [CrossRef]
- Zaman, H.; Wu, X.; Zheng, X.; Khan, S.; Ali, H. Suppression of switching crosstalk and voltage oscillations in a SiC MOSFET based half-bridge converter. Energies 2018, 11, 3111. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Liang, M. A gate driver based on variable voltage and resistance for suppressing overcurrent and overvoltage of SiC MOSFETs. Energies 2019, 12, 1640. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Xue, Y.; Tolbert, L.M.; Wang, F.; Blalock, B.J. Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs. IEEE Trans. Ind. Electron. 2014, 61, 5570–5581. [Google Scholar] [CrossRef]
- Callanan, B. Application considerations for silicon carbide MOSFETs. In Application Note; CREE Inc.: Durham, NC, USA, 2011. [Google Scholar]
- Chokhawala, R.S.; Catt, J.; Kiraly, L. A discussion on IGBT short-circuit behavior and fault protection schemes. IEEE Trans. Ind. Appl. 1995, 31, 256–263. [Google Scholar] [CrossRef]
- Colmenares, J.; Peftitsis, D.; Tolstoy, G.; Sadik, D.; Nee, H.P.; Rabkowski, J. High-efficiency three-phase inverter with SiC MOSFET power modules for motor-drive applications. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 468–474. [Google Scholar]
- Sadik, D.P.; Colmenares, J.; Tolstoy, G.; Peftitsis, D.; Bakowski, M.; Rabkowski, J.; Nee, H.P. Short-circuit protection circuits for silicon-carbide power transistors. IEEE Trans. Ind. Electron. 2016, 63, 1995–2004. [Google Scholar] [CrossRef]
- Bertelshofer, T.; März, A.; Bakran, M.M. A temperature compensated overcurrent and short-circuit detection method for SiC MOSFET modules. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications, Warsaw, Poland, 11–14 September 2017; pp. 1–10. [Google Scholar]
- Huang, F.; Flett, F. IGBT fault protection based on di/dt feedback control. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 1478–1484. [Google Scholar]
- Wang, Z.; Shi, X.; Tolbert, L.M.; Wang, F.F.; Blalock, B.J. A di/dt feedback-based active gate driver for smart switching and fast overcurrent protection of IGBT modules. IEEE Trans. Power Electron. 2014, 29, 3720–3732. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Claudio, A.; Theilliol, D.; Vela, L. A new fault detection technique for IGBT based on gate voltage monitoring. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 1001–1005. [Google Scholar]
- Park, B.G.; Lee, J.B.; Hyun, D.S. A novel short-circuit detecting scheme using turn-on switching characteristic of IGBT. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5–9 October 2008; pp. 1–5. [Google Scholar]
- Rodriguez-Blanco, M.A.; Claudio-Sanchez, A.; Theilliol, D.; Vela-Valdés, L.G.; Sibaja-Terán, P.; Hernandez-Gonzalez, L.; Aguayo-Alquicira, J. A failure-detection strategy for IGBT based on gate-voltage behavior applied to a motor drive system. IEEE Trans. Ind. Electron. 2011, 58, 1625–1633. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, B.G.; Kim, R.Y.; Hyun, D.S. A novel fault detection circuit for short-circuit faults of IGBT. In Proceedings of the Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, 6–11 March 2011; pp. 359–363. [Google Scholar]
- Horiguchi, T.; Kinouchi, S.i.; Nakayama, Y.; Oi, T.; Urushibata, H.; Okamoto, S.; Tominaga, S.; Akagi, H. A high-speed protection circuit for IGBTs subjected to hard-switching faults. IEEE Trans. Ind. Appl. 2015, 51, 1774–1781. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kinouchi, S.i.; Nakayama, Y.; Akagi, H. A fast short-circuit protection method using gate charge characteristics of SiC MOSFETs. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 4759–4764. [Google Scholar]
- Wolfspeed Two-Channel Gate Driver Board CGD15HB62P1. Available online: https://www.wolfspeed.com/cgd15hb62p1 (accessed on 10 January 2019).
- Wolfspeed-Six Channel Gate Driver Board CGD15FB45P1. Available online: https://www.wolfspeed.com/cgd15fb45p1 (accessed on 10 January 2019).
- Infineon 1200 V Single High-Side Gate Driver IC with Basic Isolation, Active Miller Clamp, DESAT, and Short Circuit Clamping. Available online: https://www.infineon.com/cms/en/product/power/gate-driver-ics/1ed020i12-b2/ (accessed on 15 October 2018).
- Advanced gate drive options for silicon carbide (SiC) MOSFETs using EiceDRIVERTM. In Application Note; Infineon Technologies AG: Neubiberg, Germany, 2018.
- Bolloju, V.; Yang, J. Influence of short circuit conditions on IGBT short circuit current in motor drives. In Proceedings of the Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, 6–11 March 2011; pp. 1675–1679. [Google Scholar]
- Infineon 1200 V Single High-Side Gate Driver IC with Basic Isolation, Active Miller Clamp, DESAT, Short Circuit Clamping, and Two-Level Turn-Off. Available online: https://www.infineon.com/cms/en/product/power/gate-driver-ics/1ed020i12-bt/ (accessed on 10 January 2019).
- Broadcom 2-A Gate Drive Optocoupler with Integrated Desaturation Detection and Fault Status Feedback. Available online: https://www.broadcom.com/products/optocouplers/industrial-plastic/isolated-gate-drive-optocouplers/highly-integrated-smart-gate-drives/hcpl-316j (accessed on 11 January 2019 ).
- Power Integrations Dual-Channel SCALETM-2 Driver Core. Available online: https://gate-driver.power.com/products/scale-2-driver-cores/2sd300c17/ (accessed on 11 January 2019).
- Wang, Z.; Zhang, J.; Wu, X.; Sheng, K. Evaluation of reverse recovery characteristic of silicon carbide metal-oxide-semiconductor field-effect transistor intrinsic diode. IET Power Electron. 2016, 9, 969–976. [Google Scholar] [CrossRef]
- Noborio, M.; Kanzaki, Y.; Suda, J.; Kimoto, T. Experimental and theoretical investigations on short-channel effects in 4H-SiC MOSFETs. IEEE Trans. Electron Devices 2005, 52, 1954–1962. [Google Scholar] [CrossRef] [Green Version]
- Callanan, B. SiC MOSFET double pulse fixture. In Application Note; CREE Inc.: Durham, NC, USA, 2011. [Google Scholar]
Parameter | Unit | Si IGBT | SiC MOSFET | Test Conditions |
---|---|---|---|---|
V | 1200 | 1200 | - | |
A | 30 | 31.6 | - | |
A | 45 | 80 | - | |
V | 5.8 | 2.2 | Si IGBT: = 0.5 mA, = . SiC MOSFET: = 1 mA, = 10 V. | |
() | pF | 810 | 990 | = 25 V |
() | 24 | 340 | ||
() | 20 | 22 | ||
nC | 90 | 49.2 | Si IGBT: = 960 V, = 15 A. SiC MOSFET: = 800 V, = 20 A. |
Si IGBT | SiC MOSFET | |
---|---|---|
10 pF | 1.5 s | 1.6 s |
47 pF | 2 s | 2.1 s |
100 pF | 2.9 s | 3 s |
= 10 pF | = 47 pF | |
---|---|---|
w/o | 1.6 s | 2.1 s |
10 k | 0.91 s | 1.02 s |
47 k | 1.07 s | 1.55 s |
100 k | 1.14 s | 1.74 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Wu, Y.; Liu, Y.; Pan, X. Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT. Energies 2019, 12, 4546. https://doi.org/10.3390/en12234546
Yin S, Wu Y, Liu Y, Pan X. Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT. Energies. 2019; 12(23):4546. https://doi.org/10.3390/en12234546
Chicago/Turabian StyleYin, Shan, Yingzhe Wu, Yitao Liu, and Xuewei Pan. 2019. "Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT" Energies 12, no. 23: 4546. https://doi.org/10.3390/en12234546
APA StyleYin, S., Wu, Y., Liu, Y., & Pan, X. (2019). Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT. Energies, 12(23), 4546. https://doi.org/10.3390/en12234546