Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis
Abstract
:1. Introduction
- The proposed model is simple and may present asymmetry through the embedding of an asymmetric factor in the classic Bouc-Wen model. Furthermore, the component of the hysteresis output in the proposed asymmetric Bouc-Wen model has been proven to be bounded. This characteristic is essential for the controller design.
- The novel adaptive control scheme for pure-feedback systems is implemented through the use of nonaffine functions to replace state variables in the backstepping design. This method overcomes control problems caused by nonaffine appearance. Furthermore, it simplifies the control scheme and ensures the global stability of all closed-loop signals. The feasibility and effectiveness of the adopted control design are demonstrated through simulation and experimental works in dSPACE.
2. Problem Formulation and Preliminaries
3. The Controller Design and Stability Analysis
4. Simulation Example and Experimental Result
4.1. Simulation Example
4.2. Experimental Results
- Piezoelectric actuator: A PZT-752.21C piezoelectric actuator manufactured by Physik Instrument Company is utilized in this experiment. The actuator has a normal expansion of 0–30 m under the input voltage 0–100 V.
- Voltage amplifier: A voltage amplifier (LVPZT, E-509) with a fixed gain of 10 is used as the excitation voltage of the regulation actuator.
- Capacitive sensor: An integrated capacitive sensor is used to measure the displacement response of the actuator.
- Data acquisition system: The dSPACE DS1103 control board is used to obtain the displacement of the piezoelectric actuator. The displacement is measured by a capacitive sensor. The dSPACE is equipped with a 16-bit analog-to-digital converter (ADC) and a 16-bit digital-to-analog converter (DAC).
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Situation | v | h | |
---|---|---|---|
1 | + | + | + |
2 | + | + | − |
3 | + | − | + |
4 | + | − | − |
5 | − | + | + |
6 | − | + | − |
7 | − | − | + |
8 | − | − | − |
References
- Chouza, A.; Barambones, O.; Calvo, I. Sliding mode-based robust control for piezoelectric actuators with inverse dynamics estimation. Energies 2019, 12, 943. [Google Scholar] [CrossRef] [Green Version]
- Tao, G.; Kokotovic, P.V. Adaptive control of plants with unknown hysteresis. IEEE Trans. Autom. Control 1995, 40, 200–212. [Google Scholar] [CrossRef]
- Jang, M.J.; Chen, C.L.; Lee, J.R. Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis. J. Franklin Inst. 2009, 346, 17–32. [Google Scholar] [CrossRef]
- Aguirre, G.; Janssens, T.; Brussel, H.V.; Al-Bender, F. Asymmetric-hysteresis compensation in piezoelectric actuators. Mech. Syst. Signal Process. 2012, 30, 218–231. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zhu, L.M.; Su, C.Y.; Ding, H.; Fatikow, S. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Trans. Autom. Sci. Eng. 2016, 13, 313–332. [Google Scholar] [CrossRef]
- Do, T.N.; Tjahjowidodo, T.; Lau, M.W.S. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems. Mechatronics 2014, 24, 12–22. [Google Scholar] [CrossRef]
- Kuhnen, K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. Eur. J. Control 2003, 9, 407–418. [Google Scholar] [CrossRef]
- Jiang, H.; Ji, H.; Qiu, J.; Chen, Y. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 1200–1210. [Google Scholar] [CrossRef]
- Liu, S.; Su, C.Y. A note on the properties of a generalized PrandtlIshlinskii model. Smart Mater. Struct. 2011, 20, 0870031–0870037. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zhu, L.M.; Su, C.Y. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Trans. Ind. Electron. 2014, 61, 1583–1595. [Google Scholar] [CrossRef]
- Song, J.; Der Kiureghian, A. Generalized Bouc-Wen model for highly asymmetric hysteresis. J. Eng. Mech. 2006, 132, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Sireteanu, T.; Giuclea, M.; Serban, V. On The fitting of experimental hysteretic loops by Bouc-Wen model. In Proceedings of the Annual Symposium of the Institute of Solid Mechanics SISOM, Bucharest, Romania, 29–30 May 2008; pp. 29–30. [Google Scholar]
- Guo, Y.X.; Mao, J.Q. Modeling of hysteresis nonlinearity based on generalized Bouc-Wen model for GMA. In International Conference on Intelligent Robotics and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 147–158. [Google Scholar]
- Su, C.Y.; Stepanenko, Y.; Svoboda, J. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 2000, 45, 2427–2432. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wen, C.; Zhang, Y. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 2004, 49, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Su, C.Y.; Wang, Q.; Chen, X. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. IEEE Trans. Autom. Control 2005, 50, 2069–2074. [Google Scholar]
- Wang, Q.; Su, C.Y. Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations. Automatica 2006, 42, 859–867. [Google Scholar] [CrossRef]
- Ren, B.; Ge, S.S.; Lee, T.H.; Su, C.Y. Adaptive neural control for a class of nonlinear systems with uncertain hysteresis inputs and time-varying state delays. IEEE Trans. Neural Netw. 2009, 20, 1148–1164. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, C.; Li, T. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans. Autom. Control 2012, 57, 2627–2633. [Google Scholar] [CrossRef]
- Liu, Y.H.; Feng, Y.; Chen, X. Robust adaptive dynamic surface control for a class of nonlinear dynamical systems with unknown hysteresis. Abstr. Appl. Anal. 2014, 2014, 640249. [Google Scholar] [CrossRef]
- Chen, M.; Ge, S.S. Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Ind. Electron. 2015, 62, 7706–7716. [Google Scholar] [CrossRef]
- Lv, W.; Wang, F. Finite-time adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis. Int. J. Fuzzy Syst. 2018, 20, 782–790. [Google Scholar] [CrossRef]
- Huo, X.; Ma, L.; Zhao, X.; Niu, B.; Zong, G. Observer-based adaptive fuzzy trackincontrol of MIMO switched nonlinear systems preceded by unknown backlash-like hysteresis. Inf. Sci. 2019, 490, 369–386. [Google Scholar] [CrossRef]
- Chen, X.; Hisayama, T.; Su, C.Y. Pseudo-inverse-based adaptive control for uncertain discrete time systems preceded by hysteresis. Automatica 2009, 45, 469–476. [Google Scholar] [CrossRef]
- Xu, Q.; Wong, P.K. Hysteresis modeling and compensation of a piezostage using least squares support vector machines. Mechatronics 2011, 21, 1239–1251. [Google Scholar] [CrossRef]
- Feng, Y.; Rabbath, C.A.; Hong, H.; Su, C.Y.; Lin, W. Inverse hysteresis control for shape memory alloy micro-actuators based flap positioning system. In Proceedings of the IEEE Conference on Decision and Control, Atlanta, GA, USA, 15–17 December 2010; pp. 3662–3667. [Google Scholar]
- Zhang, X.; Lin, Y.; Mao, J. A robust adaptive dynamic surface control for a class of nonlinear systems with unknown Prandtl–Ishilinskii hysteresis. Int. J. Robust Nonlinear Control 2011, 21, 1541–1561. [Google Scholar] [CrossRef]
- Ren, B.; San, P.; Ge, S.S.; Lee, T.H. Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 4482–4487. [Google Scholar]
- Liu, Z.; Lai, G.; Zhang, Y.; Chen, X.; Chen, C.L. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2129–2140. [Google Scholar]
- Si, W.J.; Dong, X.D.; Yang, F.F. Adaptive neural prescribed performance control for a class of strict-feedback stochastic nonlinear systems with hysteresis input. Neurocomputing 2017, 251, 35–44. [Google Scholar] [CrossRef]
- Huang, J.; Song, Y.D.; Wang, W.; Wen, C.; Li, G. Fully distributed adaptive consensus control of a class of high-order nonlinear systems with a directed topology and unknown control directions. IEEE Trans. Cybern. 2018, 48, 2349–2356. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Wen, C.; Zhou, J. Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficient. Automatica 2018, 93, 98–105. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Wen, C.; Li, G. Adaptive Event-Triggered Control of Nonlinear Systems with Controller and Parameter Estimator Triggering. IEEE Trans. Autom. Control 2019. [Google Scholar] [CrossRef]
- Ramezan, Z.; Arefi, M.M.; Zargarzadeh, H.; Jahed-Motlagh, M.R. Neuro-adaptive backstepping control of SISO nonaffine systems with unknown gain sign. ISA Trans. 2016, 65, 199–209. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, Z.F. Adaptive fuzzy controller design of nonlinear systems with unknown gain sign. Nonlinear Dyn. 2009, 58, 687–695. [Google Scholar] [CrossRef]
- Labiod, S.; Guerra, T.M. Indirect adaptive fuzzy control for a class of nonaffine nonlinear systems with unknown control directions. Int. J. Control Autom. Syst. 2010, 8, 903–907. [Google Scholar] [CrossRef]
- Zhang, T.P.; Shi, X.C.; Zhu, Q.; Yang, Y.Q. Adaptive neural tracking control of pure-feedback nonlinear systems with unknown gain signs and unmodeled dynamics. Neurocomputing 2013, 121, 290–297. [Google Scholar] [CrossRef]
- Boulkroune, A.; M’Saad, M.; Farza, M. Adaptive fuzzy tracking control for a class of MIMO nonaffine uncertain systems. Neurocomputing 2012, 93, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Park, G.T. Robust adaptive fuzzy controller for nonaffine nonlinear systems with dynamic rule activation. Int. J. Robust Nonlinear Control 2003, 13, 117–139. [Google Scholar] [CrossRef]
- Ge, S.S.; Wang, C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica 2002, 38, 671–682. [Google Scholar] [CrossRef]
- Na, J.; Ren, X.M.; Shang, C.; Gao, Y. Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. J. Process Control 2012, 22, 194–206. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, W. Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 2007, 177, 3901–3917. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, W.; Tong, S.C. Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst. 2009, 160, 2727–2754. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C.; Xu, D. Finite-time stabilization for a class of nonaffine nonlinear systems with input saturation and time-varying output constraints. IEEE Access 2018, 6, 23529–23539. [Google Scholar] [CrossRef]
- Fortuna, L.; Muscato, G. A roll stabilization system for a monohull ship: modeling, identification, and adaptive control. IEEE Trans. Control Syst. Technol. 1996, 4, 18–28. [Google Scholar] [CrossRef]
- Wang, H.; Liu, P.X.; Niu, B. Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans. Cybern. 2017, 48, 2462–2471. [Google Scholar] [PubMed]
- Charalampakis, A.E.; Dimou, C.K. Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Comput. Struct. 2010, 88, 1197–1205. [Google Scholar] [CrossRef]
- Charalampakis, A.E.; Koumousis, V.K. Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 2008, 314, 571–585. [Google Scholar] [CrossRef]
- Polycarpou, M.M.; Ioannou, P.A. A robust adaptive nonlinear control design. Automatica 1996, 32, 423–427. [Google Scholar] [CrossRef]
- Pettersen, K.Y. Lyapunov sufficient conditions for uniform semiglobal exponential stability. Automatica 2017, 78, 97–102. [Google Scholar] [CrossRef]
- Liu, Y.H.; Huang, L.; Xiao, D.; Guo, Y. Global adaptive control for uncertain nonaffine nonlinear hysteretic systems. ISA Trans. 2015, 58, 255–261. [Google Scholar] [CrossRef]
- Naser, M.; Fuad, M.; Ikhouane, F. Consistency of the Duhem model with hysteresis. Math. Prob. Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
Change of coordinates: | |
(T-1) | |
(T-2) | |
Adaptive control laws: | |
(T-3) | |
(T-4) | |
(T-5) | |
(T-6) | |
(T-7) | |
(T-8) | |
, | (T-9) |
(T-10) | |
, | (T-11) |
Parameter update laws: | |
(T-12) | |
(T-13) | |
, | (T-14) |
(T-15) | |
Tuning function: | |
, | (T-16) |
, | (T-17) |
j(present step), i(total step) |
Error | The Proposed Scheme | Scheme in [19] |
---|---|---|
0.2456 | 0.8 | |
0.0524 | 0.5137 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, X.; Pan, H.; Zhao, X. Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis. Energies 2019, 12, 4675. https://doi.org/10.3390/en12244675
Lai X, Pan H, Zhao X. Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis. Energies. 2019; 12(24):4675. https://doi.org/10.3390/en12244675
Chicago/Turabian StyleLai, Xiaohuan, Haipeng Pan, and Xinlong Zhao. 2019. "Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis" Energies 12, no. 24: 4675. https://doi.org/10.3390/en12244675
APA StyleLai, X., Pan, H., & Zhao, X. (2019). Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis. Energies, 12(24), 4675. https://doi.org/10.3390/en12244675