A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems
Abstract
:1. Introduction
2. The Mathematical Model for UC Problems
2.1. Objective Function
2.2. Constraints
- System power balance:
- System spinning reserve requirement:
- Generation limits:
- Ramp rate limits:
- Minimum up and down time limits:
3. Unconstrained UC Model for CEHMC Method
4. CEHMC Method Applied to Solve UC Problem
4.1. GAPS for Unit Start-Stop Plan
4.2. Biomimetic Membrane Computing Method for Dynamic Economic Dispatch
- Numerical crossover rule. Each element on both evolution object is numerically crossed, and the cross ratio of each element is different, which can be described as follows:
- Interval crossover rule. First, select the interval to be randomly exchanged, and then swap the elements in the same interval for two objects. This is described as follows:
4.3. CE Optimization Method
4.4. Procedures of CEHMC Method for UC Problem
- 3.1
- Initialization. Set the initial parameters, construct biomimetic membrane structure, and create Nco initial communication objects Pco in the outermost membrane and send them to the first basic membrane.
- 3.2
- Computation in the basic membrane. Create No initial objects Po in the current membrane, and execute the basic evolution rules in order for No optimal objects to be selected in this membrane. Then, select Nco optimal objects Pbest as the communication objects Pco and Ns suboptimal objects as the reservation objects. Finally, remove the remaining objects, and send the communication objects Pco into the quasi-Golgi membrane.
- 3.3
- Computation in the quasi-Golgi membrane. Update the target indicator vector, and check whether the activate condition of quasi-Golgi is satisfied. If not, the communication objects Pco are sent to the next basic membrane directly, and return to step 3.2; if satisfied, execute evolution rules in the quasi-Golgi for communication objects Pco, and then select the new communication objects Pco.
- 3.4
- Check whether the current computation cycle is completed. If not, send the communication objects Pco into the next basic membrane and return to step 3.2; if completed, start the CE optimization steps:
- Initialization. Calculate the mean and standard deviation for all communication objects Pco in the current cycle as the initial sample.
- Sampling. Take generation samples based on the .
- Evaluation. Select the elite sample set, and then calculate its mean and standard deviation.
- Update parameters. Update the mean and standard deviation according to Equations (24) and (25):The standard deviation is usually updated by dynamic smoothing, that is, , where is the smoothing factor (typically between 0.8 and 0.99), k is the iteration number, and r is an integer (typically between 5 and 10).
- Judgment of the termination condition. If the iteration was over, output the optimal object Pbest; if not, return to Step 3.2.
- 3.5
- Judgment of termination conditions. Check whether all computation cycles are completed. If not, send the communication objects Pco to the first basic membrane and return to step 3.2; if completed, output the function value of the optimal object Pbest.
5. Case Study
5.1. Simulation Results of UC Problem without Ramp Constraints
5.2. Simulation Results of UC Problem with Ramp Constraints
5.3. Influences of the Membrane Number to Convergence
5.3.1. GAPS
5.3.2. BMC
5.4. Analysis of Calculation Efficiency
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pandžić, H.; Dvorkin, Y.; Qiu, T.; Wang, Y.; Kirchen, D. Toward cost-efficient and reliable unit commitment under uncertainty. IEEE Trans. Power Syst. 2016, 31, 970–982. [Google Scholar] [CrossRef]
- Mohammad, J.F.; Mitch, C.; Shabbir, A.; Ahmed, S.; Grijalva, S. Large-scale decentralized unit commitment. Int. J. Electr. Power Energy Syst. 2015, 73, 97–106. [Google Scholar]
- Bai, Y.; Zhong, H.; Xia, Q.; Kang, C. A decomposition method for network-constrained unit commitment with AC power flow constraints. Energy 2015, 88, 595–603. [Google Scholar] [CrossRef]
- Quan, R.; Jian, J.; Yang, L. An improved priority list and neighborhood S. Arch method for unit commitment. Int. J. Electr. Power Energ. Syst. 2015, 67, 278–285. [Google Scholar] [CrossRef]
- Yuan, W.; Zhai, Q. Power-based transmission constrained unit commitment formulation with energy-based reserve. IET Gener. Trans. Distrib. 2017, 11, 409–418. [Google Scholar] [CrossRef]
- Zheng, H.; Jian, J.; Yang, L.; Quan, R. A deterministic method for the unit commitment problem in power systems. Comput. Oper. Res. 2016, 66, 241–247. [Google Scholar] [CrossRef]
- Nasri, A.; Kazempour, S.J.; Conejo, A.J.; Ghandhari, M. Network-constrained AC unit commitment under uncertainty: A benders decomposition approach. IEEE Trans. Power Syst. 2015, 31, 412–422. [Google Scholar] [CrossRef]
- GAMS Development Corporation. GAMS, the Solvers’ Manual, 2015. Available online: http://www.gams.com/solvers (accessed on 1 December 2018).
- Rouhi, F.; Effatnejad, R. Unit commitment in power system t by combination of dynamic programming (DP), genetic algorithm (GA) and particle swarm optimization (PSO). Indian J. Sci. Technol. 2015, 8, 134. [Google Scholar] [CrossRef]
- Magnússon, S.; Weeraddana, P.C.; Rabbat, M.G.; Fischione, C. On the convergence of alternating direction Lagrangian methods for nonconvex structured optimization problems. IEEE Trans. Control Netw. Syst. 2016, 3, 296–309. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Jiang, C. A matrix real-coded genetic algorithm to the unit commitment problem. Electr. Power Syst. Res. 2006, 76, 716–728. [Google Scholar] [CrossRef]
- Shukla, A.; Singh, S.N. Multi-objective unit commitment using search space-based crazy particle swarm optimisation and normal boundary intersection technique. IET Gener. Trans. Distrib. 2016, 10, 1222–1231. [Google Scholar] [CrossRef]
- Valenzuela, J.; Smith, A.E. A seeded memetic algorithm for large unit commitment problems. J. Heuristics 2002, 8, 173–195. [Google Scholar] [CrossRef]
- Wang, H.; Peng, H.; Shao, J.; Wang, T. A thresholding method based on P systems for image segmentation. ICIC Express Lett. 2012, 6, 221–227. [Google Scholar]
- Wang, X.; Zhang, G.; Zhao, J.; Rong, H.; Ipate, F.; Lufticaru, R. A modified membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. Int. J. Comput. Comm. Control 2015, 10, 732–745. [Google Scholar] [CrossRef]
- Xiao, J.H.; Zhang, X.Y.; Xu, J. A membrane evolutionary algorithm for DNA sequence design in DNA computing. Chin. Sci. Bull. 2012, 57, 698–706. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, N. A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling. Comput. Chem. Eng. 2011, 35, 272–283. [Google Scholar] [CrossRef]
- Zhang, G.X.; Cheng, J.X.; Gheorghe, M. A membrane-inspired approximate algorithm for traveling salesman problems. Rom. J. Inf. Sci. Technol. 2011, 14, 3–19. [Google Scholar]
- Leporati, A.; Pagani, D. A membrane algorithm for the min storage problem. In International Workshop on Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 443–462. [Google Scholar]
- Pereira, S.; Ferreira, P.; Vaz, A.I.F. A simplified optimization model to short-term electricity planning. Energy 2015, 9, 2126–2135. [Google Scholar] [CrossRef]
- Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [Google Scholar] [CrossRef]
- Păun, A. On P Systems with Active Membranes. Unconventional Models of Computation; UMC’2K; Springer: London, UK, 2001; pp. 187–201. [Google Scholar]
- Rubinstein, R. The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1999, 1, 127–190. [Google Scholar] [CrossRef]
- Kroese, D.P.; Porotsky, S.; Rubinstein, R.Y. The cross-entropy method for continuous multi-extremal optimization. Methodol. Comput. Appl. Probab. 2006, 8, 383–407. [Google Scholar] [CrossRef]
- Quinn, A.; Kárný, M.; Guy, T.V. Fully probabilistic design of hierarchical Bayesian models. Inf. Sci. 2016, 369, 532–547. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, K.; Fan, K.; Lai, Y. Sensational headline identification by normalized cross entropy-based metric. Comput. J. 2015, 58, 644–655. [Google Scholar] [CrossRef]
- Senjyu, T.; Shimabukuro, K.; Uezato, K.; Funabashi, T. A fast technique for unit commitment problem by extended priority list. IEEE Trans. Power Syst. 2003, 18, 882–888. [Google Scholar] [CrossRef]
- Guo, S.; Guan, X.; Zhai, Q. The necessary and sufficient conditions for determining feasible solutions to unit commitment problems with ramping constraints. IEEE Power Eng. Soc. Gen. Meet. 2005, 1, 344–349. [Google Scholar]
- Yuan, X.; Tian, H.; Zhang, S.; Ji, B.; Huo, Y. Second-order cone programming for solving unit commitment strategy of thermal generators. Energy Convers. Manag. 2013, 76, 20–25. [Google Scholar] [CrossRef]
- Roy, P.K. Solution of unit commitment problem using gravitational search algorithm. Int. J. Electric. Power Energy Syst. 2013, 53, 85–94. [Google Scholar] [CrossRef]
- Juste, K.A.; Kita, H.; Tanaka, E.; Hasegava, J. An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 1999, 14, 1452–1459. [Google Scholar] [CrossRef]
- Quan, R.; Hua, W.; Jian, J. Solution of large scale unit commitment by second-order cone programming. Proc. CSEE 2010, 30, 101–107. [Google Scholar]
- Xie, M.; Zhu, Y.; Wu, Y.; Yan, Y.; Liu, M. Application of ordinal optimization theory to solve large-scale unit commitment problem. Control Theory Appl. 2016, 33, 542–551. [Google Scholar]
- Yang, L.; Jian, J.; Han, D.; Zheng, H. A hyper-cube cone relaxation model and solution for unit commitment. Trans. China Electrotech. Soc. 2013, 28, 252–261. [Google Scholar]
- Yang, L.; Jian, J.; Zheng, H.; Dan, D. A sub hyper-cube tight mixed integer programming extended cutting plane method for unit commitment. Proc. CSEE 2013, 33, 99–108. [Google Scholar]
- Liu, S.; Jian, J. Research on unit commitment considering emission trading. Power Syst. Technol. 2013, 3, 3558–3563. [Google Scholar]
Unit | 10 | 20 | 40 | 60 | 80 | 100 | |
---|---|---|---|---|---|---|---|
GAPS | N | 20 | 20 | 40 | 50 | 60 | 60 |
No | 10 | 16 | 20 | 20 | 30 | 30 | |
Nco | 2 | 2 | 4 | 4 | 6 | 6 | |
Pc | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | |
Pm | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
HMC | Nc′ | 10 | 20 | 30 | 30 | 40 | 50 |
Nb′ | 10 | 20 | 20 | 30 | 40 | 50 | |
No′ | 10 | 10 | 10 | 10 | 12 | 12 | |
Nco′ | 4 | 4 | 4 | 4 | 6 | 6 | |
Pc′ | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | |
Pm′ | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Pt′ | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Unit | Variables | Constraints | ||
---|---|---|---|---|
Integer | Continuous | Without Ramp | With Ramp | |
10 | 240 | 240 | 748 | 886 |
20 | 480 | 480 | 1448 | 1724 |
40 | 960 | 960 | 2848 | 3400 |
60 | 1440 | 1440 | 4248 | 5076 |
80 | 1920 | 1920 | 5648 | 6752 |
100 | 2400 | 2400 | 7048 | 8428 |
Methods | Unit | ||||||
---|---|---|---|---|---|---|---|
10 | 20 | 40 | 60 | 80 | 100 | ||
SOCP [4] | 564,531 | 1,124,713 | 2,244,369 | 3,363,758 | 4,484,357 | 5,603,728 | |
IPL [7] | 563,977 | 1,123,795 | 2,243,546 | 3,360,764 | 4,481,411 | 5,600,108 | |
C&B [30] | 563,938 | 1,123,783 | 2,243,687 | 3,363,593 | 4,484,497 | 5,603,976 | |
EPSO [31] | best | 563,938 | 1,123,232 | 2,243,407 | 3,365,480 | 4,488,601 | 5,612,742 |
mean | 563,969 | 1,124,127 | 2,246,800 | 3,373,859 | 4,501,254 | 5,620,785 | |
worst | 564,206 | 1,125,815 | 2,250,364 | 3,381,947 | 4,510,984 | 5,633,447 | |
MRCGA [11] | best | 564,244 | 1,125,035 | 2,246,622 | 3,367,366 | 4,489,964 | 5,610,031 |
mean | 564,467 | 1,126,199 | 2,249,609 | 3,371,036 | 4,497,346 | 5,616,957 | |
worst | 565,756 | 1,128,326 | 2,252,076 | 3,375,815 | 4,505,511 | 5,623,248 | |
GA [13] | best | 565,866 | 1,128,876 | 2,252,909 | 3,377,393 | 4,507,692 | 5,626,362 |
mean | 567,329 | 1,130,106 | 2,262,585 | 3,394,044 | 4,525,204 | 5,669,362 | |
worst | 571,336 | 1,131,565 | 2,269,282 | 3,401,847 | 4,552,982 | 5,690,086 | |
MA [13] | best | 565,827 | 1,127,254 | 2,252,937 | 3,388,676 | 4,501,449 | 5,640,543 |
mean | 566,453 | 1,128,824 | 2,262,477 | 3,394,830 | 4,527,779 | 5,665,803 | |
worst | 566,861 | 1,130,916 | 2,270,316 | 3,408,275 | 4,545,305 | 5,698,039 | |
EP [32] | best | 564,551 | 1,125,494 | 2,249,093 | 3,371,611 | 4,498,479 | 5,623,885 |
mean | 565,352 | 1,127,257 | 2,252,612 | 3,376,255 | 4,505,536 | 5,633,800 | |
worst | 566,231 | 1,129,793 | 2,256,085 | 3,381,012 | 4,512,739 | 5,639,148 | |
HMC | best | 564,541 | 1,127,594 | 2,250,328 | 3,388,056 | 4,522,491 | 5,654,987 |
mean | 564,716 | 1,128,188 | 2,251,504 | 3,390,237 | 4,525,342 | 5,659,001 | |
worst | 564,949 | 1,128,953 | 2,260,989 | 3,392,445 | 4,527,762 | 5,664,080 | |
CEHMC | best | 563,930 | 1,123,206 | 2,243,314 | 3,360,779 | 4,479,720 | 5,600,004 |
mean | 564,027 | 1,123,309 | 2,249,388 | 3,369,956 | 4,480,122 | 5,602,334 | |
worst | 564,796 | 1,126,712 | 2,260,684 | 3,391,698 | 4,497,391 | 5,609,585 |
Methods | Unit | ||||||
---|---|---|---|---|---|---|---|
10 | 20 | 40 | 60 | 80 | 100 | ||
MISOCP [32] | 565,777 | 1,130,647 | 2,259,203 | 3,382,470 | 4,511,813 | 5,638,456 | |
OO [33] | 569,751 | 1,139,504 | 2,261,900 | 3,401,850 | 4,570,808 | 5,697,510 | |
BB [33] | 568,710 | 1,136,650 | 2,260,214 | 3,383,489 | 4,531,817 | 5,658,458 | |
HCMIP [34] | 566,084 | 1,129,241 | 2,257,269 | 3,379,852 | 4,508,689 | 5,633,984 | |
SHCMIP [35] | 565,397 | 1,127,437 | 2,251,617 | 3,376,821 | 4,501,420 | 5,625,531 | |
MILP [36] | 566,188 | 1,127,218 | 2,252,810 | 3,375,967 | 4,501,532 | 5,623,814 | |
PSO | best | 571,766 | 1,141,430 | 2,285,074 | 3,436,205 | 4,590,027 | 5,730,530 |
mean | 572,216 | 1,142,604 | 2,307,258 | 3,439,609 | 4,592,237 | 5,732,596 | |
worst | 572,623 | 1,144,225 | 2,328,432 | 3,441,807 | 4,593,553 | 5,733,525 | |
HMC | best | 568,639 | 1,134,835 | 2,269,523 | 3,402,549 | 4,542,599 | 5,679,389 |
mean | 569,396 | 1,136,139 | 2,271,292 | 3,404,612 | 4,545,670 | 5,683,837 | |
worst | 570,513 | 1,137,804 | 2,273,074 | 3,406,002 | 4,548,406 | 5,687,362 | |
CEHMC | best | 565,398 | 1,127,217 | 2,251,620 | 3,375,960 | 4,501,300 | 5,623,716 |
mean | 565,408 | 1,127,882 | 2,252,030 | 3,376,309 | 4,501,976 | 5,623,975 | |
worst | 5,654,812 | 1,130,861 | 2,256,933 | 3,380,629 | 4,503,035 | 5,624,019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Du, Y.; Cheng, P.; Wei, W.; Liu, M. A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems. Energies 2019, 12, 486. https://doi.org/10.3390/en12030486
Xie M, Du Y, Cheng P, Wei W, Liu M. A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems. Energies. 2019; 12(3):486. https://doi.org/10.3390/en12030486
Chicago/Turabian StyleXie, Min, Yuxin Du, Peijun Cheng, Wei Wei, and Mingbo Liu. 2019. "A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems" Energies 12, no. 3: 486. https://doi.org/10.3390/en12030486
APA StyleXie, M., Du, Y., Cheng, P., Wei, W., & Liu, M. (2019). A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems. Energies, 12(3), 486. https://doi.org/10.3390/en12030486