On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process †
Abstract
:1. Introduction
2. System Configuration
3. System Modeling
4. Results
5. Discussion
6. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
FEI | Fuel efficiency improvement, - |
h | Specific enthalpy, kJ/kg |
k | Specific exergy, kJ |
LHV | Lower heating value, kJ/kg |
P | Pressure, kPa |
Q | Heat transfer, kJ/kg |
q | Specific heat transfer, kJ/kg |
s | Specific entropy, kJ/kg·K |
T | Temperature, K |
w | Work, kJ |
Special characters: | |
η | Efficiency, - |
Subscripts: | |
0 | Dead state |
c,e | Cooling capacity of expanded hydrogen |
cool | Cooling requirement |
s | Isentropic process |
References
- Kim, S.C.; Lee, S.; Yoon, K.B. Thermal characteristics during hydrogen fueling process of type IV cylinder. Int. J. Hydrogen Energy 2010, 35, 6830–6835. [Google Scholar] [CrossRef]
- Paster, M.D.; Ahluwalia, R.K.; Berry, G.; Elgowainy, A.; Lasher, S.; McKenney, K.; Gardiner, M. Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int. J. Hydrogen Energy 2011, 36, 14534–14551. [Google Scholar] [CrossRef]
- Galassi, M.C.; Baraldi, D.; Iborra, B.A.; Moretto, P. CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks. Int. J. Hydrogen Energy 2012, 37, 6886–6892. [Google Scholar] [CrossRef]
- SAE J2601. Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- International Standard Organization. Gaseous Hydrogen and Hydrogen Blends Land Vehicle Fuel Tanks; ISO/TS 15869.2009; International Standard Organization: Geneva, Switzerland, 2009. [Google Scholar]
- De Miguel, N.; Ortiz Cebolla, R.; Acosta, B.; Moretto, P.; Harskamp, F.; Bonato, C. Compressed hydrogen tanks for on-board application: Thermal behaviour during cycling. Int. J. Hydrogen Energy 2017, 40, 6449–6458. [Google Scholar] [CrossRef]
- Monde, M.; Woodfield, P.L.; Takano, T.; Kosaka, M. Estimation of temperature change in practical hydrogen pressure tanks being filled at high pressures of 35 and 70 MPa. Int. J. Hydrogen Energy 2012, 37, 5723–5734. [Google Scholar] [CrossRef]
- Zheng, J.; Guo, J.; Yang, J.; Zhao, Y.; Zhao, L.; Pan, X.; Ma, J.; Zhang, L. Experimental and numerical study on temperature rise within a 70 MPa type III cylinder during fast refueling. Int. J. Hydrogen Energy 2013, 38, 10956–10962. [Google Scholar] [CrossRef]
- De Miguel, N.; Acosta, B.; Baraldi, D.; Melideo, R.; Ortiz Cebolla, R.; Moretto, P. The role of initial tank temperature on refuelling of on-board hydrogen tanks. Int. J. Hydrogen Energy 2016, 41, 8606–8615. [Google Scholar] [CrossRef] [Green Version]
- Melideo, D.; Baraldi, D. CFD analysis of fast filling strategies for hydrogen tanks and their effects on key-parameters. Int. J. Hydrogen Energy 2015, 40, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Elgowainy, A.; Reddi, K.; Lee, D.Y.; Rustagi, N.; Gupta, E. Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling. Int. J. Hydrogen Energy 2017, 42, 29067–29079. [Google Scholar] [CrossRef]
- Ortiz Cebolla, R.; Acosta, B.; de Miguel, N.; Moretto, P. Effect of precooled inlet gas and mass flow rate on final state of charge during hydrogen refuelling. Int. J. Hydrogen Energy 2015, 40, 4698–4706. [Google Scholar] [CrossRef]
- Campanari, S.; Manzolini, G.; Iglesia, F.G. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J. Power Sources 2009, 186, 464–477. [Google Scholar] [CrossRef]
- REFPROP Version 9.1. NIST Standard Reference Database 23; The U.S. Secretary of Commerce: Washington, DC, USA, 2013.
- Borel, L.; Favrat, D. Thermodynamics and Energy System Analysis; EPFL Press: Lausanne, Switzerland, 2010; pp. 399–490. [Google Scholar]
- savENRGTM phase change materials. Available online: http://www.rgees.com/documents/aug_2013/savENRG%20PCM-HS26N.pdf (accessed on 3 March 2015).
- Robert BOSCH GmbH. Diesel Systems—Waste Heat Recovery System for Commercial Vehicles—Brochure. Available online: http://products.bosch-mobility-solutions.com (accessed on 27 April 2014).
PCM Properties | Hydrogen Storage | ||
---|---|---|---|
Melting Temp. (°C) | −25.6 | Volume (L) | 100 |
Freezing Temp. (°C) | −26.2 | Gas weight (kg) | 3.97 |
Liquid density (kg/m3) | 1200 | (kJ/kg) | 600.7 |
Latent heat (kJ/kg) | 205 | (kJ) | 2384.3 |
PCM volume and weight satisfying the cooling requirement | |||
Volume (L) | 9.7 | ||
Weight (kg) | 11.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.M.; Shin, D.G.; Kim, C.G. On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process. Energies 2019, 12, 561. https://doi.org/10.3390/en12030561
Kim YM, Shin DG, Kim CG. On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process. Energies. 2019; 12(3):561. https://doi.org/10.3390/en12030561
Chicago/Turabian StyleKim, Young Min, Dong Gil Shin, and Chang Gi Kim. 2019. "On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process" Energies 12, no. 3: 561. https://doi.org/10.3390/en12030561
APA StyleKim, Y. M., Shin, D. G., & Kim, C. G. (2019). On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process. Energies, 12(3), 561. https://doi.org/10.3390/en12030561