Assessment of the Impact of Bioenergy on Sustainable Economic Development
Abstract
:1. Introduction
2. Materials and Methods
The Econometric Model
- H1: Bioenergy labor productivity has a positive impact on sustainable economic development.
- H2: Bioenergy productivity has a positive impact on sustainable economic development.
- H3: Productivity of the resources has a positive impact on sustainable economic development.
3. Results and Discussion
Estimating a Model for Economic Growth Based on Productivity of Bioenergy
4. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Romania’s SUSTAINABLE DEVELOPMENT Strategy 2030. Available online: http://dezvoltaredurabila.gov.ro/web/wp-content/uploads/2018/12/Romanias-Sustainable-Development-Strategy-2030.pdf (accessed on 12 November 2018).
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529. [Google Scholar] [CrossRef]
- Miles, L.; Kapos, V. Reducing greenhouse gas emissions from deforestation and forest degradation: Global land-use implications. Science 2008, 320, 1454–1455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zou, X.; Xu, C.; Yang, Q. Decoupling Greenhouse Gas Emissions from Crop Production: A Case Study in the Heilongjiang Land Reclamation Area, China. Energies 2018, 11, 1480. [Google Scholar] [CrossRef]
- Busu, C.; Busu, M. Modeling the Circular Economy Processes at the EU Level Using an Evaluation Algorithm Based on Shannon Entropy. Processes 2018, 6, 225. [Google Scholar] [CrossRef]
- Bocken, N.M.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef]
- Di Fulvio, F.; Forsell, N.; Korosuo, A.; Obersteiner, M.; Hellweg, S. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Sci. Total Environ. 2019, 651, 1505–1516. [Google Scholar] [CrossRef]
- Rada, E.C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L.I. Circular economy and waste to energy. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2018; Volume 1968, p. 030050. [Google Scholar]
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef] [Green Version]
- Mateos, E.; Ormaetxea, L. Sustainable Renewable Energy by Means of Using Residual Forest Biomass. Energies 2019, 12, 13. [Google Scholar] [CrossRef]
- Richard, T.L. Challenges in scaling up biofuels infrastructure. Science 2010, 329, 793–796. [Google Scholar] [CrossRef]
- Paredes-Sánchez, J.P.; López-Ochoa, L.M.; López-González, L.M.; Las-Heras-Casas, J.; Xiberta-Bernat, J. Evolution and perspectives of the bioenergy applications in Spain. J. Clean. Prod. 2018, 213, 553–568. [Google Scholar] [CrossRef]
- Schiavon, M.; Ragazzi, M.; Rada, E.C.; Magaril, E.; Torretta, V. Towards the sustainable management of air quality and human exposure: exemplary case studies. Wit Trans. Ecol. Environ. 2018, 230, 489–500. [Google Scholar]
- Ahrens, T.; Drescher-Hartung, S.; Anne, O. Sustainability of future bioenergy production. Waste Manag. 2017, 67, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhang, P.; Su, Y. An overview of biofuels policies and industrialization in the major biofuel producing countries. Renew. Sustain. Energy Rev. 2015, 50, 991–1003. [Google Scholar] [CrossRef]
- Hektor, B. Socio-economic management models for the bioenergy sector. In Workshop Socio-Economic Aspects of Bioenergy Systems: Challenges and Opportunities (2001; Alberta); IEA Bioenergy Task 29, Energy Institute ‘Hrvoje Požar’: Zagreb, Croatia, 2001; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.5439&rep=rep1&type=pdf (accessed on 10 December 2018).
- Celik, Y.; Hotchkiss, D.R. The socio-economic determinants of maternal health care utilization in Turkey. Soc. Sci. Med. 2000, 50, 1797–1806. [Google Scholar] [CrossRef]
- Otiman, P.I. Sustainable Development Strategy of Agriculture and Rural Areas in Romania on Medium and Long Term-Rural Romania XXI–. Agric. Econ. Rural Dev. 2008, 5, 4–18. [Google Scholar]
- Robu, B.; Ioan, C.C.; Robu, E.; Macoveanu, M. European frame for sustainable agriculture in Romania: Policies and strategies. Environ. Eng. Manag. J. (Eemj) 2009, 8, 1171–1179. [Google Scholar] [CrossRef]
- Aceleanu, M.I. Sustainability and competitiveness of Romanian farms through organic agriculture. Sustainability 2016, 8, 245. [Google Scholar] [CrossRef]
- Eurostat. Available online: http://ec.europa.eu/eurostat (accessed on 30 December 2018).
- Cioca, L.I.; Giurea, R.; Moise, I.A.; Precazzini, I.; Ragazzi, M.; Rada, E.C. Local Environmental Impact of Wood Combustion in Agro-Tourism Structures. In Proceedings of the 8th International Conference on Energy and Environment: Energy Saved Today is Asset for Future, Bucharest, Romania, 19–20 October 2018; Volume 8120797, pp. 120–123. [Google Scholar]
- Giurea, R.; Precazzini, I.; Ragazzi, M.; Achim, M.I. Criteria for environmental optimization of electrical and thermal energy in agro-Tourism. Wit Trans. Ecol. Environ. 2017, 224, 317–324. [Google Scholar]
- Bio-Based Industries Consortium. 2017 Annual Report. Available online: https://www.bbi-europe.eu/sites/default/files/bbi-ju-aar-2017.pdf (accessed on 28 December 2018).
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- RedCorn, R.; Fatemi, S.; Engelberth, A.S. Comparing End-Use Potential for Industrial Food-Waste Sources. Engineering 2018, 4, 371–380. [Google Scholar] [CrossRef]
- Prakash, J.; Sharma, R.; Ray, S.; Koul, S.; Kalia, V.C. Wastewater: A Potential Bioenergy Resource. Indian J. Microbiol. 2018, 58, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Gottumukkala, L.D.; Haigh, K.; Collard, F.-X.; van Rensburg, E.; Görgens, J. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge. Bioresour. Technol. 2016, 215, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Joshi, O.; Grebner, D.L.; Khanal, P.N. Status of urban wood-waste and their potential use for sustainable bioenergy use in Mississippi. Resour. Conserv. Recycl. 2015, 102, 20–26. [Google Scholar] [CrossRef]
- Rada, E.C.; Ragazzi, M.; Fiori, L.; Antolini, D. Bio-drying of grape marc and other biomass: A comparison. Water Sci. Technol. 2009, 60, 1065–1070. [Google Scholar] [CrossRef]
- Glavonjić, B.; Vlosky, R.P.; Borlea, G.F.; Petrović, S.; Sretenović, P. The wood products industry in the western Balkan region. For. Prod. J. 2009, 59, 98–111. [Google Scholar] [CrossRef]
- Ekioglu, S.D.; Acharya, A.; Leightley, L.E.; Arora, S. Analyzing the design and management of biomass-to-biorefinery supply chain. Comput. Ind. Eng. 2009, 57, 1342–1352. [Google Scholar] [CrossRef]
- Bowling, I.M.; Ponce-Ortega, J.M.; El-Halwagi, M.M. Facility Location and Supply Chain Optimization for a Biorefinery. Ind. Eng. Chem. Res. 2011, 50, 6276–6286. [Google Scholar] [CrossRef]
- Alex Marvin, W.; Schmidt, L.D.; Benjaafar, S.; Tiffany, D.G.; Daoutidis, P. Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain. Chem. Eng. Sci. 2012, 67, 68–79. [Google Scholar] [CrossRef]
- Unlocking Trade Opportunities: Case Studies of Export Success from Developing Countries; Robins, N.; Roberts, S. (Eds.) IIED: London, UK, 1997. [Google Scholar]
- Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef]
- Moura, A.; Comini, G.; Teodosio, A.D.S.D.S. The international growth of a social business: A case study. Rev. De Adm. De Empresas 2015, 55, 444–460. [Google Scholar] [CrossRef]
- Stanciu, M.; Humă, C.; Chiriac, D. Sustainability of production and consumption of goods and services. Life Qual. 2011, XXII, 115–136. [Google Scholar]
- Wüste, A.; Schmuck, P. Bioenergy villages and regions in Germany: An interview study with initiators of communal bioenergy projects on the success factors for restructuring the energy supply of the community. Sustainability 2012, 4, 244–256. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Buchholz, T.S.; Volk, T.A.; Luzadis, V.A. A participatory systems approach to modeling social, economic, and ecological components of bioenergy. Energy Policy 2007, 35, 6084–6094. [Google Scholar] [CrossRef]
- Gheewala, S.H.; Berndes, G.; Jewitt, G. The bioenergy and water nexus. Biofuelsbioproducts Biorefining 2011, 5, 353–360. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Loorbach, D.; Rotmans, J. Managing transitions for sustainable development. In Understanding Industrial Transformation; Springer: Dordrecht, The Netherlands, 2006; pp. 187–206. [Google Scholar]
- Wang, J.; Yang, Y.; Bentley, Y.; Geng, X.; Liu, X. Sustainability assessment of bioenergy from a global perspective: A review. Sustainability 2018, 10, 2739. [Google Scholar] [CrossRef]
- Xu, X.; Fu, Y.; Li, S. Spatiotemporal changes in crop residues with potential for bioenergy use in China from 1990 to 2010. Energies 2013, 6, 6153–6169. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747. [Google Scholar] [CrossRef]
- Harrod, R.F. An essay in dynamic theory. Econ. J. 1939, 49, 14–33. [Google Scholar] [CrossRef]
- Domar, E.D. Capital expansion, rate of growth, and employment. Econometrica J. Econom. Soc. 1946, 14, 137–147. [Google Scholar] [CrossRef]
- Solow, R.M. A Contribution to the Theory of Economic Growth. Q. J. Econ. 1956, 70, 1–65. [Google Scholar] [CrossRef]
- Swan, T.W. Economic growth and capital accumulation. Econ. Rec. 1956, 32, 334–361. [Google Scholar] [CrossRef]
- Cass, D. Optimum growth in an aggregative model of capital accumulation. Rev. Econ. Stud. 1965, 32, 233–240. [Google Scholar] [CrossRef]
- Koopmans, T.C. Efficient allocation of resources. Econom. J. Econom. Soc. 1951, 19, 455–465. [Google Scholar] [CrossRef]
- Barro, R. Economic Growth in a Cross Section of Countries. Q. J. Econ. 1991, 106, 407–443. [Google Scholar] [CrossRef]
- Matuzeviciute, K.; Butkus, M. Remittances, development level, and long-run economic growth. Economies 2016, 4, 28. [Google Scholar] [CrossRef]
- Dobrea, R.C.; Molanescu, G.; Busu, C. Food Sustainable Model Development: An ANP Approach to Prioritize Sustainable Factors in the Romanian Natural Soft Drinks Industry Context. Sustainability 2015, 7, 10007–10020. [Google Scholar] [CrossRef] [Green Version]
- Barro, R.J. Human capital and growth. Am. Econ. Rev. 2001, 91, 12–17. [Google Scholar] [CrossRef]
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Considine, T.J.; Larson, D.F. The environment as a factor of production. The World Bank, 2004. Available online: https://elibrary.worldbank.org/doi/abs/10.1596/1813-9450-3271 (accessed on 12 December 2018).
- Barbier, E.B. The concept of sustainable economic development. Environ. Conserv. 1987, 14, 101–110. [Google Scholar] [CrossRef]
- Gillis, M.; Perkins, D.H.; Roemer, M.; Snodgrass, D.R. Economics of Development, 2nd ed.; W. W. Norton & Company: New York, NY, USA, 1992. [Google Scholar]
- Dowrick, S.; Rogers, M. Classical and technological convergence: Beyond the Solow-Swan growth model. Oxf. Econ. Pap. 2002, 54, 369–385. [Google Scholar] [CrossRef]
- Barbier, E.B. The concept of sustainable economic development. In The Economics of Sustainability, 1st ed.; Pezzey, J.C.V., Toman, M.A., Eds.; Routledge, Taylor & Francis Group: New York, NY, USA, 2017; pp. 87–96. [Google Scholar]
- Toossi, M. Employment outlook: 2008-18-labor force projections to 2018: Older workers staying more active. Mon. Lab. Rev. 2009, 132, 30. [Google Scholar]
- De Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Schmidheiny, K. The Multiple Linear Regression Model. 2016. Available online: https://www.schmidheiny.name/teaching/ols.pdf (accessed on 12 November 2018).
- Lopez, R. The environment as a factor of production: The effects of economic growth and trade liberalization. J. Environ. Econ. Manag. 1994, 27, 163–184. [Google Scholar] [CrossRef]
- Woodward, R.T.; Wui, Y.S. The economic value of wetland services: A meta-analysis. Ecol. Econ. 2001, 37, 257–270. [Google Scholar] [CrossRef]
- Bilgili, F.; Ozturk, I. Biomass energy and economic growth nexus in G7 countries: Evidence from dynamic panel data. Renew. Sustain. Energy Rev. 2015, 49, 132–138. [Google Scholar] [CrossRef]
- Long, N.V. The green paradox in open economies: Lessons from static and dynamic models. Rev. Environ. Econ. Policy 2015, 9, 266–284. [Google Scholar] [CrossRef]
- Gomme, P.; Rupert, P. Theory, measurement and calibration of macroeconomic models. J. Monet. Econ. 2007, 54, 460–497. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, L. The Solow–Swan model with a bounded population growth rate. J. Math. Econ. 2006, 42, 14–21. [Google Scholar] [CrossRef]
- Durlauf, S.N.; Johnson, P.A.; Temple, J.R. Growth econometrics. Handbook of economic growth 2005, 1, 555–677. [Google Scholar]
- Sorger, G. On the Multi-Country Version of the Solow–Swan Model. Jpn. Econ. Rev. 2003, 54, 146–164. [Google Scholar] [CrossRef]
- Dohtani, A. A growth-cycle model of Solow–Swan type, I. J. Econ. Behav. Organ. 2010, 76, 428–444. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean | Minimum | Maximum | Standard dev. |
---|---|---|---|---|
Y | 273.345 | 62.215 | 483.351 | 73.234 |
X1 | 17,234.542 | 6143.251 | 29,765.239 | 4276.841 |
X2 | 16,845.263 | 2876.123 | 30,345.241 | 5276.230 |
X3 | 1123.467 | 109.272 | 2034.101 | 367.324 |
Variable | Y | X1 | X2 | X3 |
---|---|---|---|---|
Y | 1 | 0.645 | 0.712 | 0.804 |
X1 | 0.645 | 1 | 0.089 | 0.127 |
X2 | 0.712 | 0.089 | 1 | 0.245 |
X3 | 0.804 | 0.127 | 0.245 | 1 |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
---|---|---|---|---|
1 | 0.843 b | 0.711 | 0.684 | 1.213 |
Model | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
1 | Regression | 22.312 | 3 | 8.342 | 7.211 |
Residual | 4.176 | 4 | 1.157 | - | |
Total | 26.488 | 7 | - | - |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|---|
B | Std. err. | Beta | Tolerance | VIF | ||||
1 | (constant) | -4.165 | 304.804 | - | 0.703 | 0.028 | - | - |
X1 | 0.134 | 0.034 | 0.120 | 0.203 | 0.045 | 0.893 | 1.189 | |
X2 | 0.213 | 0.065 | 0.234 | 0.120 | 0.029 | 0.875 | 1.106 | |
X4 | 0.206 | 0.046 | 0.305 | 0.368 | 0.016 | 0.793 | 1.345 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busu, M. Assessment of the Impact of Bioenergy on Sustainable Economic Development. Energies 2019, 12, 578. https://doi.org/10.3390/en12040578
Busu M. Assessment of the Impact of Bioenergy on Sustainable Economic Development. Energies. 2019; 12(4):578. https://doi.org/10.3390/en12040578
Chicago/Turabian StyleBusu, Mihail. 2019. "Assessment of the Impact of Bioenergy on Sustainable Economic Development" Energies 12, no. 4: 578. https://doi.org/10.3390/en12040578
APA StyleBusu, M. (2019). Assessment of the Impact of Bioenergy on Sustainable Economic Development. Energies, 12(4), 578. https://doi.org/10.3390/en12040578