Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems
Abstract
:1. Introduction
- (1)
- A comprehensive review of various IdMs concerning their principle of operations, advantages and disadvantages, performance evaluation, and real-time applications is presented.
- (2)
- A comparison of various IdMs in terms of accuracy, computational burden, speed, and cost is performed based on the critical analysis.
- (3)
- An assessment of challenges in islanding detection in accordance with the guidelines recommended in well-known standards.
- (4)
- Analysis of potential IdMs and identification of efficient schemes.
- (5)
- Real-time applications of IdMs in AC and DC microgrids.
2. Problem Definition and Challenges
3. Review of IdMs
3.1. Active IdMs
3.1.1. IM Method
3.1.2. AFD Method
3.1.3. SFS Method
3.1.4. SMFS Method
3.1.5. SVS Method
3.2. Passive IdMs
3.2.1. O/UVP or O/UFP Method
3.2.2. ROCOF/P Method
3.2.3. PJD Method
3.3. Remote IdMs
3.3.1. PLC Method
3.3.2. SCADA Method
3.3.3. Transfer Trip Method
3.4. Modified Passive IdMs
3.4.1. FT-Based Method
3.4.2. WT-Based Method
3.4.3. ST-Based Method
3.4.4. TTT Based Method
3.4.5. ACF Based Method
3.4.6. KF Based Methods
3.5. Intelligent IdMs
3.5.1. ANN-Based Method
3.5.2. DT-Based Method
3.5.3. PNN-Based Method
3.5.4. SVM-Based Method
3.5.5. FL-Based Method
4. Islanding Detection Standards
- Monitoring the magnitude and direction of the power-flow
- A DG unit must be disconnected within a time limit of 2 s if the main utility has gone out of service
- Observe the characteristics and functionality of DG units
- Proper control of voltage, frequency, and power quality
- The contributing and non-contributing DG need to be identified
5. Performance Analysis
5.1. NDZ
5.2. Parallel RLC Loads
5.3. Load Quality Factor
6. Comparison of Various IdMs
7. Recommendations and Future Trends
8. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
AC | Alternating current |
ACF | Autocorrelation function |
AFD | Active frequency drift |
ANN | Artificial neural network |
CIGRE | International council for large electric systems |
DC | Direct current |
DG | Distributed Generation |
DFT | Discrete Fourier transform |
DT | Decision tree |
DWT | Discrete Wavelet transform |
FFT | Fast Fourier transform |
FL | Fuzzy logic |
FT | Fourier transform |
IdM | Islanding detection method |
IEC | International Electrotechnical Commission |
IM | Impedance measurement |
IPDN | Integrated power distribution network |
KF | Kalman filter |
NDZ | Non-detection zone |
O/UVP | Over/Under voltage protection |
O/UFP | Over/Under frequency protection |
PCC | Point of common coupling |
PJD | Phase jump detection |
PLC | Power line communication |
PLL | Phase-locked loop |
PNN | Probabilistic neural network |
RLC | Resistive, inductive, and capacitive |
ROCOF | Rate of change of frequency |
ROCOP | Rate of change of power |
SCADA | Supervisory control and data acquisition |
SHD | Selected harmonic distortion |
SMFS | Sliding mode frequency shift |
ST | S-transform |
STFT | Short time Fourier transform |
SVM | Support vector machine |
SVS | Sandia voltage shift |
TTT | Time-time transform |
WPT | Wavelet packet transform |
WT | Wavelet transform |
References
- Dutta, S.; Sadhu, P.K.; Jaya Bharata Reddy, M.; Mohanta, D.K. Shifting of research trends in islanding detection method—A comprehensive survey. Prot. Control Mod. Power Syst. 2018, 3, 1–20. [Google Scholar] [CrossRef]
- Haider, R.; Kim, C.-H. Chapter 7—Protection of DERs. In Integration of Distributed Energy Resources in Power Systems; Funabashi, T., Ed.; Academic Press: London, UK, 2016; pp. 157–192. ISBN 978-0-12-803212-1. [Google Scholar]
- Reigosa, D.D.; Briz, F.; Blanco Charro, C.; Guerrero, J.M. Passive Islanding Detection Using Inverter Nonlinear Effects. IEEE Trans. Power Electron. 2017, 32, 8434–8445. [Google Scholar] [CrossRef]
- Zheng, T.; Yang, H.; Zhao, R.; Kang, Y.; Terzija, V.; Zheng, T.; Yang, H.; Zhao, R.; Kang, Y.C.; Terzija, V. Design, Evaluation and Implementation of an Islanding Detection Method for a Micro-grid. Energies 2018, 11, 323. [Google Scholar] [CrossRef]
- Han, H.; Hou, X.; Yang, J.; Wu, J.; Su, M.; Guerrero, J.M. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 2016, 7, 200–215. [Google Scholar] [CrossRef] [Green Version]
- Gush, T.; Bukhari, S.B.A.; Haider, R.; Admasie, S.; Oh, Y.-S.; Cho, G.-J.; Kim, C.-H. Fault detection and location in a microgrid using mathematical morphology and recursive least square methods. Int. J. Electr. Power Energy Syst. 2018, 102, 324–331. [Google Scholar] [CrossRef]
- Haider, R.; Zaman, M.S.U.; Bukhari, S.B.A.; Ahmed, Z.; Mehdi, M.; Oh, Y.-S.; Kim, C.-H. Protection Coordination Using Superconducting Fault Current Limiters in Microgrids. J. Korean Inst. Illum. Electr. Install. Eng. 2017, 31, 26–36. [Google Scholar] [CrossRef]
- Saeed Uz Zaman, M.; Bukhari, S.; Hazazi, K.; Haider, Z.; Haider, R.; Kim, C.-H.; Saeed Uz Zaman, M.; Bukhari, S.B.A.; Hazazi, K.M.; Haider, Z.M.; et al. Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia. Energies 2018, 11, 787. [Google Scholar] [CrossRef]
- Bignucolo, F.; Cerretti, A.; Coppo, M.; Savio, A.; Turri, R.; Bignucolo, F.; Cerretti, A.; Coppo, M.; Savio, A.; Turri, R. Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks. Energies 2017, 10, 156. [Google Scholar] [CrossRef]
- Funabashi, T.; Koyanagi, K.; Yokoyama, R. A review of islanding detection methods for distributed resources. In Proceedings of the 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, 23–26 June 2003; Volume 2, pp. 608–613. [Google Scholar]
- Abokhalil, A.; Awan, A.; Al-Qawasmi, A.-R. Comparative Study of Passive and Active Islanding Detection Methods for PV Grid-Connected Systems. Sustainability 2018, 10, 1798. [Google Scholar] [CrossRef]
- Basso, T.S. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid; National Renewable Energy Laboratory: Golden, CO, USA, 2014; Volume 15013.
- IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces; IEEE: New York, NY, USA, 2018; ISBN 978-1-5044-4639-6.
- Huang, J.; Jiang, C.; Xu, R. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008, 12, 2472–2483. [Google Scholar]
- Bukhari, S.B.A.; Saeed Uz Zaman, M.; Haider, R.; Oh, Y.-S.; Kim, C.-H. A protection scheme for microgrid with multiple distributed generations using superimposed reactive energy. Int. J. Electr. Power Energy Syst. 2017, 92, 156–166. [Google Scholar] [CrossRef]
- Ghanbari, T.; Farjah, E.; Naseri, F. Power quality improvement of radial feeders using an efficient method. Electr. Power Syst. Res. 2018, 163, 140–153. [Google Scholar] [CrossRef]
- Vahedi, H.; Noroozian, R.; Jalilvand, A.; Gharehpetian, G.B. A New Method for Islanding Detection of Inverter-Based Distributed Generation Using DC-Link Voltage Control. IEEE Trans. Power Deliv. 2011, 26, 1176–1186. [Google Scholar] [CrossRef]
- Khamis, A.; Xu, Y.; Dong, Z.Y.; Zhang, R. Faster Detection of Microgrid Islanding Events using an Adaptive Ensemble Classifier. IEEE Trans. Smart Grid 2018, 9, 1889–1899. [Google Scholar] [CrossRef]
- Mazhari, I.; Jafarian, H.; Enslin, J.H.; Bhowmik, S.; Parkhideh, B. Locking Frequency Band Detection Method for Islanding Protection of Distribution Generation. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1386–1395. [Google Scholar] [CrossRef]
- Bukhari, S.B.A.; Haider, R.; Saeed Uz Zaman, M.; Oh, Y.-S.; Cho, G.-J.; Kim, C.-H. An interval type-2 fuzzy logic based strategy for microgrid protection. Int. J. Electr. Power Energy Syst. 2018, 98, 209–218. [Google Scholar] [CrossRef]
- Arguence, O.; Cadoux, F.; Raison, B.; De Alvaro, L. Impact of Power Regulations on Unwanted Islanding Detection. IEEE Trans. Power Electron. 2018, 33, 8972–8981. [Google Scholar] [CrossRef]
- Pouryekta, A.; Ramachandaramurthy, V.; Padmanaban, S.; Blaabjerg, F.; Guerrero, J.; Pouryekta, A.; Ramachandaramurthy, V.K.; Padmanaban, S.; Blaabjerg, F.; Guerrero, J.M. Boundary Detection and Enhancement Strategy for Power System Bus Bar Stabilization—Investigation under Fault Conditions for Islanding Operation. Energies 2018, 11, 889. [Google Scholar] [CrossRef]
- Cui, Q.; El-Arroudi, K.; Joos, G. Islanding Detection of Hybrid Distributed Generation under Reduced Non-detection Zone. IEEE Trans. Smart Grid 2018, 9, 5027–5037. [Google Scholar] [CrossRef]
- Do, H.T.; Zhang, X.; Nguyen, N.V.; Li, S.; Chu, T.T.-T. Passive islanding detection method using Wavelet Packet Transform in Grid Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2016, 31, 6955–6967. [Google Scholar] [CrossRef]
- Reigosa, D.; Briz, F.; Charro, C.B.; Garcia, P.; Guerrero, J.M. Active Islanding Detection Using High-Frequency Signal Injection. IEEE Trans. Ind. Appl. 2012, 48, 1588–1597. [Google Scholar] [CrossRef]
- Voglitsis, D.; Valsamas, F.; Rigogiannis, N.; Papanikolaou, N.; Voglitsis, D.; Valsamas, F.; Rigogiannis, N.; Papanikolaou, N. On the Injection of Sub/Inter-Harmonic Current Components for Active Anti-Islanding Purposes. Energies 2018, 11, 2183. [Google Scholar] [CrossRef]
- Laghari, J.A.; Mokhlis, H.; Karimi, M.; Bakar, A.H.A.; Mohamad, H. Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review. Energy Convers. Manag. 2014, 88, 139–152. [Google Scholar] [CrossRef]
- Far, H.G.; Rodolakis, A.J.; Joos, G. Synchronous Distributed Generation Islanding Protection Using Intelligent Relays. IEEE Trans. Smart Grid 2012, 3, 1695–1703. [Google Scholar] [CrossRef]
- Hamzeh, M.; Farhangi, S.; Farhangi, B. A new control method in PV grid connected inverters for anti-islanding protection by impedance monitoring. In Proceedings of the 2008 11th Workshop on Control and Modeling for Power Electronics, Zurich, Switzerland, 17–20 August 2008; pp. 1–5. [Google Scholar]
- Tran, T.; Nguyen, D.; Fujita, G.; Tran, T.S.; Nguyen, D.T.; Fujita, G. Islanding Detection Method Based on Injecting Perturbation Signal and Rate of Change of Output Power in DC Grid-Connected Photovoltaic System. Energies 2018, 11, 1313. [Google Scholar] [CrossRef]
- Ku Ahmad, K.N.E.; Selvaraj, J.; Rahim, N.A. A review of the islanding detection methods in grid-connected PV inverters. Renew. Sustain. Energy Rev. 2013, 21, 756–766. [Google Scholar] [CrossRef]
- Bei, T.-Z. Accurate active islanding detection method for grid-tied inverters in distributed generation. IET Renew. Power Gener. 2017, 11, 1633–1639. [Google Scholar] [CrossRef]
- Lopes, L.A.C.; Sun, H. Performance assessment of active frequency drifting islanding detection methods. IEEE Trans. Energy Convers. 2006, 21, 171–180. [Google Scholar] [CrossRef]
- Ropp, M.E.; Begovic, M.; Rohatgi, A. Analysis and performance assessment of the active frequency drift method of islanding prevention. IEEE Trans. Energy Convers. 1999, 14, 810–816. [Google Scholar] [CrossRef]
- Khamis, A.; Shareef, H.; Bizkevelci, E.; Khatib, T. A review of islanding detection techniques for renewable distributed generation systems. Renew. Sustain. Energy Rev. 2013, 28, 483–493. [Google Scholar] [CrossRef]
- Khodaparastan, M.; Vahedi, H.; Khazaeli, F.; Oraee, H. A Novel Hybrid Islanding Detection Method for Inverter-Based DGs Using SFS and ROCOF. IEEE Trans. Power Deliv. 2017, 32, 2162–2170. [Google Scholar] [CrossRef]
- Trujillo, C.L.; Velasco, D.; Figueres, E.; Garcerá, G. Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing. Appl. Energy 2010, 87, 3591–3605. [Google Scholar] [CrossRef] [Green Version]
- Akhlaghi, S.; Akhlaghi, A.; Ghadimi, A.A. Performance analysis of the Slip mode frequency shift islanding detection method under different inverter interface control strategies. In Proceedings of the 2016 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, USA, 19–20 February 2016; pp. 1–7. [Google Scholar]
- Emadi, A.; Afrakhte, H.; Sadeh, J. Fast active islanding detection method based on second harmonic drifting for inverter-based distributed generation. IET Gener. Transm. Distrib. 2016, 10, 3470–3480. [Google Scholar] [CrossRef]
- Velasco, D.; Trujillo, C.L.; Garcerá, G.; Figueres, E. Review of anti-islanding techniques in distributed generators. Renew. Sustain. Energy Rev. 2010, 14, 1608–1614. [Google Scholar] [CrossRef]
- Bahrani, B.; Karimi, H.; Iravani, R. Nondetection Zone Assessment of an Active Islanding Detection Method and its Experimental Evaluation. IEEE Trans. Power Deliv. 2011, 26, 517–525. [Google Scholar] [CrossRef]
- Haider, R.; Kim, C.H.; Ghanbari, T.; Bukhari, S.B.A.; Saeed uz Zaman, M.; Baloch, S.; Oh, Y.S. Passive islanding detection scheme based on autocorrelation function of modal current envelope for photovoltaic units. IET Gener. Transm. Distrib. 2018, 12, 726–736. [Google Scholar] [CrossRef]
- Li, C.; Cao, C.; Cao, Y.; Kuang, Y.; Zeng, L.; Fang, B. A review of islanding detection methods for microgrid. Renew. Sustain. Energy Rev. 2014, 35, 211–220. [Google Scholar] [CrossRef]
- Mango, F.D.; Liserre, M.; Dell’Aquila, A.; Pigazo, A. Overview of Anti-Islanding Algorithms for PV Systems. Part I: Passive Methods. In Proceedings of the 2006 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August–1 September 2006; pp. 1878–1883. [Google Scholar]
- Salles, D.; Freitas, W.; Vieira, J.C.M.; Venkatesh, B. A Practical Method for Nondetection Zone Estimation of Passive Anti-Islanding Schemes Applied to Synchronous Distributed Generators. IEEE Trans. Power Deliv. 2015, 30, 2066–2076. [Google Scholar] [CrossRef]
- Freitas, W.; Xu, W.; Affonso, C.M.; Huang, Z. Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE Trans. Power Deliv. 2005, 20, 1315–1324. [Google Scholar] [CrossRef]
- Jahdi, S.; Lai, L.L. DG islanding operation detection methods in combination of harmonics protection schemes. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 5–7 December 2011; pp. 1–8. [Google Scholar]
- Llaria, A.; Curea, O.; Jiménez, J.; Camblong, H. Survey on microgrids: Unplanned islanding and related inverter control techniques. Renew. Energy 2011, 36, 2052–2061. [Google Scholar] [CrossRef]
- Samet, H.; Hashemi, F.; Ghanbari, T. Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO. Renew. Sustain. Energy Rev. 2015, 52, 1–18. [Google Scholar] [CrossRef]
- Mahat, P.; Chen, Z.; Bak-Jensen, B. Review of islanding detection methods for distributed generation. In Proceedings of the 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 2743–2748. [Google Scholar]
- Wang, W.; Kliber, J.; Zhang, G.; Xu, W.; Howell, B.; Palladino, T. A Power Line Signaling Based Scheme for Anti-Islanding Protection of Distributed Generators—Part II: Field Test Results. IEEE Trans. Power Deliv. 2007, 22, 1767–1772. [Google Scholar] [CrossRef]
- Bayrak, G.; Kabalci, E. Implementation of a new remote islanding detection method for wind–solar hybrid power plants. Renew. Sustain. Energy Rev. 2016, 58, 1–15. [Google Scholar] [CrossRef]
- Raza, S.; Mokhlis, H.; Arof, H.; Laghari, J.A.; Wang, L. Application of signal processing techniques for islanding detection of distributed generation in distribution network: A review. Energy Convers. Manag. 2015, 96, 613–624. [Google Scholar] [CrossRef]
- Hashemi, F.; Mohammadi, M.; Kargarian, A. Islanding detection method for microgrid based on extracted features from differential transient rate of change of frequency. IET Gener. Transm. Distrib. 2017, 11, 891–904. [Google Scholar] [CrossRef]
- Ray, P.K.; Kishor, N.; Mohanty, S.R. Islanding and Power Quality Disturbance Detection in Grid-Connected Hybrid Power System Using Wavelet and S-Transform. IEEE Trans. Smart Grid 2012, 3, 1082–1094. [Google Scholar] [CrossRef]
- Barros, J.; Diego, R.I. Application of the wavelet-packet transform to the estimation of harmonic groups in current and voltage waveforms. IEEE Trans. Power Deliv. 2006, 21, 533–535. [Google Scholar] [CrossRef]
- Samantaray, S.R.; Samui, A.; Chitti Babu, B. Time-frequency transform-based islanding detection in distributed generation. IET Renew. Power Gener. 2011, 5, 431–438. [Google Scholar] [CrossRef]
- Mohanty, S.R.; Kishor, N.; Ray, P.K.; Catalao, J.P.S. Comparative Study of Advanced Signal Processing Techniques for Islanding Detection in a Hybrid Distributed Generation System. IEEE Trans. Sustain. Energy 2015, 6, 122–131. [Google Scholar] [CrossRef]
- Haider, R.; Kim, C.H.; Ghanbari, T.; Bukhari, S.B.A. Harmonic-signature-based islanding detection in grid-connected distributed generation systems using Kalman filter. IET Renew. Power Gener. 2018, 12, 1813–1822. [Google Scholar] [CrossRef]
- Hartmann, N.B.; dos Santos, R.C.; Grilo, A.P.; Vieira, J.C.M. Hardware Implementation and Real-Time Evaluation of an ANN-Based Algorithm for Anti-Islanding Protection of Distributed Generators. IEEE Trans. Ind. Electron. 2018, 65, 5051–5059. [Google Scholar] [CrossRef]
- Merlin, V.L.; Santos, R.C.; Grilo, A.P.; Vieira, J.C.M.; Coury, D.V.; Oleskovicz, M. A new artificial neural network based method for islanding detection of distributed generators. Int. J. Electr. Power Energy Syst. 2016, 75, 139–151. [Google Scholar] [CrossRef]
- El-Arroudi, K.; Joos, G.; Kamwa, I.; McGillis, D.T. Intelligent-Based Approach to Islanding Detection in Distributed Generation. IEEE Trans. Power Deliv. 2007, 22, 828–835. [Google Scholar] [CrossRef]
- Heidari, M.; Seifossadat, G.; Razaz, M. Application of decision tree and discrete wavelet transform for an optimized intelligent-based islanding detection method in distributed systems with distributed generations. Renew. Sustain. Energy Rev. 2013, 27, 525–532. [Google Scholar] [CrossRef]
- Khamis, A.; Shareef, H.; Mohamed, A.; Bizkevelci, E. Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network. Neurocomputing 2015, 148, 587–599. [Google Scholar] [CrossRef]
- Samantaray, S.R.; Babu, B.C.; Dash, P.K. Probabilistic Neural Network Based Islanding Detection in Distributed Generation. Electr. Power Compon. Syst. 2011, 39, 191–203. [Google Scholar] [CrossRef]
- Alshareef, S.; Talwar, S.; Morsi, W.G. A New Approach Based on Wavelet Design and Machine Learning for Islanding Detection of Distributed Generation. IEEE Trans. Smart Grid 2014, 5, 1575–1583. [Google Scholar] [CrossRef]
- Matic-Cuka, B.; Kezunovic, M. Islanding Detection for Inverter-Based Distributed Generation Using Support Vector Machine Method. IEEE Trans. Smart Grid 2014, 5, 2676–2686. [Google Scholar] [CrossRef]
- Dash, P.K.; Padhee, M.; Panigrahi, T.K. A hybrid time–frequency approach based fuzzy logic system for power island detection in grid connected distributed generation. Int. J. Electr. Power Energy Syst. 2012, 42, 453–464. [Google Scholar] [CrossRef]
- Hashemi, F.; Ghadimi, N.; Sobhani, B. Islanding detection for inverter-based DG coupled with using an adaptive neuro-fuzzy inference system. Int. J. Electr. Power Energy Syst. 2013, 45, 443–455. [Google Scholar] [CrossRef]
- Karimi, H.; Yazdani, A.; Iravani, R. Negative-Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Unit. IEEE Trans. Power Electron. 2008, 23, 298–307. [Google Scholar] [CrossRef]
- Ye, Z.; Kolwalkar, A.; Zhang, Y.; Du, P.; Walling, R. Evaluation of Anti-Islanding Schemes Based on Nondetection Zone Concept. IEEE Trans. Power Electron. 2004, 19, 1171–1176. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y. An Islanding Detection Algorithm for Inverter-Based Distributed Generation Based on Reactive Power Control. IEEE Trans. Power Electron. 2014, 29, 4672–4683. [Google Scholar] [CrossRef]
- Ghanbari, T.; Samet, H.; Hashemi, F. Islanding detection method for inverter-based distributed generation with negligible non-detection zone using energy of rate of change of voltage phase angle. IET Gener. Transm. Distrib. 2015, 9, 2337–2350. [Google Scholar]
Classification of IdMs | Principle of Operation | Merits | Demerits | Computation Burden | Detection Speed | NDZ | ||
---|---|---|---|---|---|---|---|---|
Local | Active | Inverter-based | Injecting perturbation or external frequency signal | Accurate & easy to implement | Impact of complex control loop modifications & switching transients | Medium | Medium | Small |
Rotating based | ||||||||
Passive | Conventional | Monitoring change in system parameters at PCC | Simple & easy to implement | Poor reliability | Low | Low | Large | |
Modified | Accurate, Simple and fast | Hard to select a threshold value | High | Small | ||||
Remote | Communication-based | Communication b/w DG and Utility | Accurate, Efficient, fast, & Reliable | Complex, sensitive, expensive & mostly used for large-scale power systems | High | High | Very Small | |
Signal processing based | Feature extraction | Medium | ||||||
Intelligence based | Pattern recognition & data training | High |
Parameters | IEEE Std. 1547-2003 | IEEE Std. 929-2000 | IEC 62116 | Korean Standard |
---|---|---|---|---|
Quality Factor | 1 | 2.5 | 1 | 1 |
Detection Time | t < 2 s | t < 2 s | t < 2 s | t < 0.5 s |
Allowed Frequency Range (nominal frequency fo) | 59.3 Hz ≤ f ≤ 60.5 Hz | 59.3 Hz ≤ f ≤ 60.5 Hz | (-1.5 Hz ≤ f and f ≤ (fo + 1.5 Hz) | 59.3 Hz ≤ f ≤ 60.5 Hz |
Allowed Voltage Range (nominal voltage Vo) | 0.88 ≤ V ≤ 1.10 | 0.88 ≤ V ≤ 1.10 | 0.85 ≤ V ≤ 1.15 | 0.88 ≤ V ≤1.10 |
Type | Based On | Merits | Demerits | Computation Burden | Speed | |
---|---|---|---|---|---|---|
Conventional Passive | OVP/UVP | 1. Simple 2. Economical 3. Easy to implement 4. Good for large power mismatch | 1. Low reliability 2. Creates maloperation 3. Hard to select the threshold 4. Low NDZ | Very Low | Within 2 s | |
OFP/UFP | ||||||
ROCOP | ||||||
Modified Passive | Signal Processing-based | WT | 1. Provides multiple resolution 2. Variable window size 3. Suitable candidate to analyze the signal signatures in different perspectives | 1. Sensitive to noisy signals 2. Extract only the low-frequency band 3. Computationally complex | Medium | Around 1 s |
STFT | 1. Provides good resolution 2. Frame-based processing | 1. Fixed window size 2. Individual frequency components are not localized in the window | Low | |||
KF | 1. Sample-wise response 2. Variable window size/Adaptive 3. Robust against the noisy environment | 1. Deriving KF formulation for complex system is a challenge. 2. Limited to specified harmonics estimation | ||||
Intelligence-based | ANN | 1. Good accuracy 2. Used for multiple inverter-based DG Units 3. No threshold selection required | 1. Highly abstract 2. Require large data for training | High | Less than 1 s | |
SVM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Haider, R.; Cho, G.-J.; Kim, C.-H.; Won, C.-Y.; Chai, J.-S. Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies 2019, 12, 837. https://doi.org/10.3390/en12050837
Kim M-S, Haider R, Cho G-J, Kim C-H, Won C-Y, Chai J-S. Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies. 2019; 12(5):837. https://doi.org/10.3390/en12050837
Chicago/Turabian StyleKim, Min-Sung, Raza Haider, Gyu-Jung Cho, Chul-Hwan Kim, Chung-Yuen Won, and Jong-Seo Chai. 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems" Energies 12, no. 5: 837. https://doi.org/10.3390/en12050837
APA StyleKim, M. -S., Haider, R., Cho, G. -J., Kim, C. -H., Won, C. -Y., & Chai, J. -S. (2019). Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies, 12(5), 837. https://doi.org/10.3390/en12050837