Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines
Abstract
:1. Introduction
1.1. Wax Deposition
1.2. Mathematical Modelling of Wax Deposition
1.3. Composition and Characterization of Waxy Crude Oil
1.4. Saturates, Aromatics, Resins, and Asphaltenes Distribution and Density of Crudes
2. Problems Caused by Waxy Crude Oil
2.1. Formation Damage during Oil Recovery
2.2. Mechanisms of Formation Damage by Paraffin Wax
2.3. Effects of Wax Deposition on the Flow Assurance of Hydrocarbon
2.4. Paraffin Wax Management
3. Detection of Deposited Wax
3.1. Approaches to Determine the Presence of Wax in Crude Oil
3.2. Detection of Blockage
4. Factors Affecting the Formation of Waxy Crude Oil
4.1. Temperature
4.2. Type of Crude Oil and Its Constituents
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbas, A.J. Descaling of Petroleum Production Tubing Utilising Aerated High Pressure Flat Fan Water Sprays. Ph.D. Thesis, University of Salford, Salford, UK, 2014. [Google Scholar]
- Chouparova, E.; Lanzirotti, A.; Feng, H.; Jones, K.; Marinkovic, N.; Whitson, C.; Philp, P. Characterization of petroleum deposits formed in a producing well by synchrotron radiation-based microanalyses. Energy Fuels 2004, 18, 1199–1212. [Google Scholar] [CrossRef]
- Ajayi, O.E. Modelling of Controlled Wax Deposition and Loosening in Oil and Gas Production Systems. Master’s Thesis, Institutt for Energi-Og Prosessteknikk, Trondheim, Norway, 2013. [Google Scholar]
- Rehan, M.; Nizami, A.-S.; Taylan, O.; Al-Sasi, B.O.; Demirbas, A. Determination of wax content in crude oil. Pet. Sci. Technol. 2016, 34, 799–804. [Google Scholar] [CrossRef]
- Ganeeva, Y.M.; Yusupova, T.N.; Romanov, G.V. Waxes in asphaltenes of crude oils and wax deposits. Pet. Sci. 2016, 13, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Deposition and flocculation of asphaltenes from crude oils. Pet. Sci. Technol. 2016, 34, 6–11. [Google Scholar] [CrossRef]
- Al-Sahhaf, T.A.; Fahim, M.A.; Elsharkawy, A.M. Effect of inorganic solids, wax to asphaltene ratio, and water cut on the stability of water-in-crude oil emulsions. J. Dispers. Sci. Technol. 2009, 30, 597–604. [Google Scholar] [CrossRef]
- Mahir, L.H.A.; Vilas Boas Fávero, C.; Ketjuntiwa, T.; Fogler, H.S.; Larson, R.G. Mechanism of Wax Deposition on Cold Surfaces: Gelation and Deposit Aging. Energy Fuels 2018. [Google Scholar] [CrossRef]
- Van Der Geest, C.; Guersoni, V.C.B.; Merino-Garcia, D.; Bannwart, A.C. Wax Deposition Experiment with Highly Paraffinic Crude Oil in Laminar Single-Phase Flow Unpredictable by Molecular Diffusion Mechanism. Energy Fuels 2018, 32, 3406–3419. [Google Scholar] [CrossRef]
- Zhu, H.; Li, C.; Yang, F.; Liu, H.; Liu, D.; Sun, G.; Yao, B.; Liu, G.; Zhao, Y. Effect of Thermal Treatment Temperature on the Flowability and Wax Deposition Characteristics of Changqing Waxy Crude Oil. Energy Fuels 2018, 32, 10605–10615. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, S.; Fogler, H.S. Wax Deposition: Experimental Characterizations, Theoretical Modeling, and Field Practices; CRC Press: Boca Raton, FL, USA; London, UK, 2016. [Google Scholar]
- Theyab, M.A. Study of Fluid Flow Assurance in Hydrocarbon Production–Investigation Wax Mechanisms. Ph.D. Thesis, London South Bank University, London, UK, 2017. [Google Scholar]
- Theyab, M. Wax deposition process: Mechanisms, affecting factors and mitigation methods. Open Access J. Sci. 2018, 2, 112–118. [Google Scholar] [CrossRef]
- Arsalan, N.; Buiting, J.J.; Nguyen, Q.P.J.C.; Physicochemical, S.A.; Aspects, E. Surface energy and wetting behavior of reservoir rocks. Colloids Surf. A Physicochem. Eng. Asp. 2015, 467, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Burger, E.D.; Perkins, T.K.; Striegler, J.H. Studies of Wax Deposition in the Trans-Alaska Pipeline. J. Pet. Technol. 1981, 33, 1075–1086. [Google Scholar] [CrossRef]
- Todi, S. Experimental and Modeling Studies of Wax Deposition in Crude Oil Carrying Pipelines. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 2005. [Google Scholar]
- Bern, P.A.; Withers, V.R.; Cairns, R.J.R. Wax Deposition in Crude Oil Pipelines. In Proceedings of the European Offshore Technology Conference and Exhibition, London, UK, 21–24 October 1980; p. 8. [Google Scholar]
- Brown, T.S.; Niesen, V.G.; Erickson, D.D. Measurement and Prediction of the Kinetics of Paraffin Deposition. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1993; p. 16. [Google Scholar]
- Venkatesan, R.; Fogler, H.S. Comments on analogies for correlated heat and mass transfer in turbulent flow. AIChE J. 2004, 50, 1623–1626. [Google Scholar] [CrossRef]
- Singh, P.; Venkatesan, R.; Fogler, H.S.; Nagarajan, N. Formation and aging of incipient thin film wax-oil gels. AIChE J. 2000, 46, 1059–1074. [Google Scholar] [CrossRef]
- Weingarten, J.S.; Euchner, J.A. Methods for Predicting Wax Precipitation and Deposition. SPE Prod. Eng. 1988, 3, 121–126. [Google Scholar] [CrossRef]
- Guo, B.; Song, S.; Ghalambor, A.; Lin, T.R. (Eds.) Chapter 15—Flow Assurance. In Offshore Pipelines, 2nd ed.; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 179–231. [Google Scholar]
- Lee, H.S. Computational and Rheological Study of Wax Deposition and Gelation in Subsea Pipelines. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2008. [Google Scholar]
- Zheng, S.; Saidoun, M.; Mateen, K.; Palermo, T.; Ren, Y.; Fogler, H.S. Wax Deposition Modeling with Considerations of Non-Newtonian Fluid Characteristics. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2016; p. 18. [Google Scholar]
- Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Corvaro, F. Experiences in numerical simulation of wax deposition in oil and multiphase pipelines: Theory versus reality. J. Pet. Sci. Eng. 2019, 174, 997–1008. [Google Scholar] [CrossRef]
- Giacchetta, G.; Marchetti, B.; Leporini, M.; Terenzi, A.; Dall’Acqua, D.; Capece, L.; Cocci Grifoni, R. Pipeline wax deposition modeling: A sensitivity study on two commercial software. Petroleum 2017. [Google Scholar] [CrossRef]
- Li, S.; Huang, Q.; Zhao, D.; Lv, Z. Relation of heat and mass transfer in wax diffusion in an emulsion of water and waxy crude oil under static condition. Exp. Therm. Fluid Sci. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Soedarmo, A.A.; Daraboina, N.; Sarica, C. Validation of wax deposition models with recent laboratory scale flow loop experimental data. J. Pet. Sci. Eng. 2017, 149, 351–366. [Google Scholar] [CrossRef]
- Cussler, E.L.; Hughes, S.E.; Ward, W.J.; Aris, R. Barrier membranes. J. Membr. Sci. 1988, 38, 161–174. [Google Scholar] [CrossRef]
- Sieder, E.N.; Tate, G.E. Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 1936, 28, 1429–1435. [Google Scholar] [CrossRef]
- Hausen, H. Darstellung des warmeuberganges in rohren durch verallgemeinerte potenz-beziehungen. ZVDI Beih Verfahrenstech 1943, 4, 91. [Google Scholar]
- White, M.; Pierce, K.; Acharya, T. A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry. SPE Prod. Oper. 2018, 33, 476–485. [Google Scholar] [CrossRef]
- Ellison, B.; Gallagher, C.; Frostman, L.; Lorimer, S. The Physical Chemistry of Wax, Hydrates, and Asphaltene. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2000. [Google Scholar]
- Speight, J.G. The Chemistry and Technology of Petroleum, 3rd ed.; CRC Press: New York, NY, USA, 2014. [Google Scholar]
- Oliveira, M.; Vieira, L.; Miranda, L.; Miranda, D.; Marques, L. On the Influence of Micro-and Macro-Cristalline Paraffins on the Physical and Rheological Properties of Crude Oil and Organic Solvents. Chem. Chem. Technol. 2016, 10, 451–458. [Google Scholar] [CrossRef]
- Council, N.R. Chemical composition of petroleum hydrocarbon sources. In Oil in the Sea: Inputs, Fates, and Effects; National Academy Press: Washington, DC, USA, 1985. [Google Scholar]
- Sivakumar, P.; Sircar, A.; Deka, B.; Anumegalai, A.S.; Moorthi, P.S.; Yasvanthrajan, N. Flow improvers for assured flow of crude oil in midstream pipeline—A review. J. Pet. Sci. Eng. 2018, 164, 24–30. [Google Scholar] [CrossRef]
- Crabtree, M.; Eslinger, D.; Fletcher, P.; Miller, M.; Johnson, A.; King, G. Fighting scale—Removal and prevention. Oilfield Rev. 1999, 11, 30–45. [Google Scholar]
- Al-Matar, H.; Al-Ashhab, J.K.; Mokhtar, M.; Ridzauddin, S. Techniques used to monitor and remove strontium sulfate scale in UZ producing wells. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 5–8 November 2006. [Google Scholar]
- Strachan, A.; Stanley, R.E.; Farrell, R.; Dahle Smith, H.; Leontieff, A.; Muir, J. Downhole Scale Management on the Alba Field: A Case History. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2013. [Google Scholar]
- Uba, E.; Ikeji, K.; Onyekonwu, M. Measurement of wax appearance temperature of an offshore live crude oil using laboratory light transmission method. In Proceedings of the Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 4–6 August 2004. [Google Scholar]
- Mmata, B.; Onyekonwu, M. Measurement of the Wax Appearance Temperature of a Gas Condensate Using High Pressure Microscopy Technique. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 6–8 August 2018. [Google Scholar]
- Monger-McClure, T.; Tackett, J.; Merrill, L. Comparisons of cloud point measurement and paraffin prediction methods. SPE Prod. Facil. 1999, 14, 4–16. [Google Scholar] [CrossRef]
- Alghanduri, L.M.; Elgarni, M.M.; Daridon, J.-L.; Coutinho, J.A. Characterization of Libyan waxy crude oils. Energy Fuels 2010, 24, 3101–3107. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Petroleum Product Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 182. [Google Scholar]
- Fang, L.; Zhang, X.; Ma, J.; Zhang, B. Investigation into a pour point depressant for Shengli crude oil. Ind. Eng. Chem. Res. 2012, 51, 11605–11612. [Google Scholar] [CrossRef]
- Ekaputra, A.A.; Sabil, K.M.; Hosseinipour, A.; Saaid, I.B. Impacts of Viscosity, Density and Pour Point to the Wax Deposition. J. Appl. Sci. 2014, 14, 3334–3338. [Google Scholar] [CrossRef]
- Coto, B.; Martos, C.; Espada, J.J.; Robustillo, M.D.; Peña, J.L. Experimental study of the effect of inhibitors in wax precipitation by different techniques. Energy Sci. Eng. 2014, 2, 196–203. [Google Scholar] [CrossRef] [Green Version]
- El-Ella, R.A.; Nassef, E. Determination of wax content in Egyptian crude oils. Int. J. Eng. Trends Technol. 2014, 8, 93–97. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; El-Hamouly, S.H.; Khidr, T.T.; El-Ghazawy, R.A.; Higazy, S.A. Preparation the Esters of Oleic Acid-Maleic Anhydride Copolymer and Their Evaluation as Flow Improvers for Waxy Crude Oil. J. Dispers. Sci. Technol. 2013, 34, 1585–1596. [Google Scholar] [CrossRef]
- Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow start-up and transportation of waxy crude oil in pipelines—A review. J. Non-Newton. Fluid Mech. 2018, 251, 69–87. [Google Scholar] [CrossRef]
- Pedersen, K.S.; Rønningsen, H.P. Influence of wax inhibitors on wax appearance temperature, pour point, and viscosity of waxy crude oils. Energy Fuels 2003, 17, 321–328. [Google Scholar] [CrossRef]
- Lu, X.; Redelius, P. Effect of bitumen wax on asphalt mixture performance. Constr. Build. Mater. 2007, 21, 1961–1970. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Li, H. Determining the wax content of crude oils by using differential scanning calorimetry. Thermochim. Act. 2004, 410, 23–26. [Google Scholar] [CrossRef]
- Musser, B.J.; Kilpatrick, P.K. Molecular characterization of wax isolated from a variety of crude oils. Energy Fuels 1998, 12, 715–725. [Google Scholar] [CrossRef]
- Alcazar-Vara, L.A.; Garcia-Martinez, J.A.; Buenrostro-Gonzalez, E. Effect of asphaltenes on equilibrium and rheological properties of waxy model systems. Fuel 2012, 93, 200–212. [Google Scholar] [CrossRef]
- Taraneh, J.B.; Rahmatollah, G.; Hassan, A.; Alireza, D. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Process. Technol. 2008, 89, 973–977. [Google Scholar] [CrossRef]
- Patel, M.R.; Chitte, P.S.; Bharambe, D. Oleic acid based polymeric flow improvers for Langhnaj (North Gujarat, India) crude oil. Egypt. J. Pet. 2017, 26, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ni, G.; Yang, F.; Li, C.; Dong, G. Modified maleic anhydride co-polymers as pour-point depressants and their effects on waxy crude oil rheology. Energy Fuels 2012, 26, 995–1001. [Google Scholar] [CrossRef]
- Kelland, M.A. Production Chemicals for the Oil and Gas Industry; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Belhaj, H.; Khalifeh, H.A.; Al-Huraibi, N. Asphaltene stability in crude oil during production process. J. Pet. Environ. Biotechnol. 2013, 4, 1–5. [Google Scholar] [CrossRef]
- Abutaqiya, M.I.; Zhang, J.; Vargas, F.M. Viscosity modeling of reservoir fluids using the Friction Theory with PC-SAFT crude oil characterization. Fuel 2019, 235, 113–129. [Google Scholar] [CrossRef]
- Pevneva, G.; Fursenko, E.; Voronetskaya, N.; Mozhayskaya, M.; Golovko, A.; Nesterov, I.; Kashirtsev, V.; Shevchenko, N. Hydrocarbon composition and structural parameters of resins and asphaltenes of naphthenic oils of northern West Siberia. Rus. Geol. Geophys. 2017, 58, 425–433. [Google Scholar] [CrossRef]
- Islam, M. Role of asphaltenes on oil recovery and mathematical modeling of asphaltene properties. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 1994; Volume 40, pp. 249–298. [Google Scholar]
- Mohammadi, A.H.; Richon, D. A monodisperse thermodynamic model for estimating asphaltene precipitation. AIChE J. 2007, 53, 2940–2947. [Google Scholar] [CrossRef]
- Aske, N.; Kallevik, H.; Sjöblom, J. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy Fuels 2001, 15, 1304–1312. [Google Scholar] [CrossRef]
- ASTM UOP46-85. Paraffin Wax Content of Petroleum Oils and Asphalts; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Tissot, B.P.; Welte, D.H. From kerogen to petroleum. In Petroleum Formation and Occurrence; Springer: Berlin, Germany, 1984; pp. 160–198. [Google Scholar]
- Civan, F. Reservoir Formation Damage; Gulf Professional Publishing: Houston, TX, USA, 2015. [Google Scholar]
- Khalil, C.; Rocha, N.; Silva, E. Detection of Formation Damage Associated to Paraffin in Reservoirs of the Reconcavo Baiano, Brazil. In Proceedings of the International Symposium on Oilfield Chemistry, Houston, TX, USA, 18–21 February 1997. [Google Scholar]
- Kumar, D.; Chishti, S.S.; Rai, A.; Patwardhan, S.D. Scale inhibition using nano-silica particles. In Proceedings of the SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition, Abu Dhabi, UAE, 2–4 April 2012. [Google Scholar]
- Frenier, W.W.; Ziauddin, M. Formation, Removal, and Inhibition of Inorganic Scale in the Oilfield Environment; Society of Petroleum Engineers: Richardson, TX, USA, 2008. [Google Scholar]
- Sun, X.; Ni, H.; Qiao, H.; Wang, X.; Ma, B.; Wang, R.; Shen, Z.; Zhao, M. Experimental study on the mechanism of carbon dioxide removing formation paraffin deposits. J. Nat. Gas Sci. Eng. 2016, 32, 59–65. [Google Scholar] [CrossRef]
- Yong, F.; Llave, F. Chemical Removal of Formation Damage from Paraffin Deposition Part I-Solubility and Dissolution Rate. In Proceedings of the SPE Formation Damage Control Symposium, Lafayette, LA, USA, 14–15 February 1996. [Google Scholar]
- Towler, B.; Jaripatke, O.; Mokhatab, S. Experimental investigations of the mitigation of paraffin wax deposition in crude oil using chemical additives. Pet. Sci. Technol. 2011, 29, 468–483. [Google Scholar] [CrossRef]
- Santos, R.; Loh, W.; Bannwart, A.; Trevisan, O. An overview of heavy oil properties and its recovery and transportation methods. Braz. J. Chem. Eng. 2014, 31, 571–590. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.C. Removal of Nearbore Formation Damage from Paraffin Is Better Achieved Using Solvents. In Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, Brazil, 30 August–3 September 1997. [Google Scholar]
- Zhu, T.; Walker, J.A.; Liang, J. Evaluation of Wax Deposition and Its Control during Production of Alaska North Slope Oils; University of Alaska: Anchorage, AK, USA, 2008. [Google Scholar]
- Alvarez, J.O.; Tovar, F.D.; Schechter, D.S. Improving Oil Recovery in the Wolfcamp Reservoir by Soaking/Flowback Production Schedule with Surfactant Additives. SPE Reserv. Eval. Eng. 2018, 21, 1083–1096. [Google Scholar] [CrossRef]
- Barker, K. Formation damage related to hot oiling. In Proceedings of the SPE Production Operations Symposium, Oklahoma City, OK, USA, 8–10 March 1987. [Google Scholar]
- Newberry, M.E.; Barker, K. Formation damage prevention through the control of paraffin and asphaltene deposition. In Proceedings of the SPE Production Operations Symposium, Oklahoma City, OK, USA, 10–12 March 1985. [Google Scholar]
- Oil, S.A. An Introduction to Enhanced Oil Recovery Techniques; Gas Pty Limited: Queensland, Australia, 2013. [Google Scholar]
- Arshad, A.; Al-Majed, A.A.; Menouar, H.; Muhammadain, A.M.; Mtawaa, B. Carbon dioxide (CO2) miscible flooding in tight oil reservoirs: A case study. In Proceedings of the Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 14–16 December 2009. [Google Scholar]
- Fath, A.H.; Pouranfard, A.-R. Evaluation of miscible and immiscible CO2 injection in one of the Iranian oil fields. Egypt. J. Pet. 2014, 23, 255–270. [Google Scholar] [CrossRef]
- Marathe, R.; Turner, M.L.; Fogden, A. Pore-scale distribution of crude oil wettability in carbonate rocks. Energy Fuels 2012, 26, 6268–6281. [Google Scholar] [CrossRef]
- Shaojun, W.; Civan, F.; Strycker, A.R. Simulation of paraffin and asphaltene deposition in porous media. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 16–19 February 1999. [Google Scholar]
- Sanjay, M.; Simanta, B.; Kulwant, S. Paraffin problems in crude oil production and transportation: A review. SPE Prod. Facil. 1995, 10, 50–54. [Google Scholar] [CrossRef]
- Jafarpour, H.; Moghadasi, J.; Khormali, A.; Petrakov, D.; Ashena, R. Increasing the stimulation efficiency of heterogeneous carbonate reservoirs by developing a multi-bached acid system. J. Pet. Sci. Eng. 2019, 172, 50–59. [Google Scholar] [CrossRef]
- King, G.E. Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. [Google Scholar]
- Alvarado, V.; Manrique, E. Enhanced oil recovery: An update review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Rubinstein, J.L.; Mahani, A.B. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol. Res. Lett. 2015, 86, 1060–1067. [Google Scholar] [CrossRef]
- Lyons, W.C.; Plisga, G.J. Standard Handbook of Petroleum and Natural Gas Engineering; Elsevier: Atlanta, GA, USA, 2011. [Google Scholar]
- Dall’Acqua, D.; Benucci, M.; Corvaro, F.; Leporini, M.; Grifoni, R.C.; Del Monaco, A.; Di Lullo, A.; Passucci, C.; Marchetti, B. Experimental results of pipeline dewatering through surfactant injection. J. Pet. Sci. Eng. 2017, 159, 542–552. [Google Scholar] [CrossRef]
- Quan, Q.; Gong, J.; Wang, W.; Gao, G. Engineering, Study on the aging and critical carbon number of wax deposition with temperature for crude oils. J. Pet. Sci. Eng. 2015, 130, 1–5. [Google Scholar] [CrossRef]
- Paso, K.G.; Fogler, H.S. Bulk stabilization in wax deposition systems. Energy Fuels 2004, 18, 1005–1013. [Google Scholar] [CrossRef]
- Huang, Z.; Lee, H.S.; Senra, M.; Scott Fogler, H. A fundamental model of wax deposition in subsea oil pipelines. AIChE J. 2011, 57, 2955–2964. [Google Scholar] [CrossRef]
- Roehner, R.; Fletcher, J.; Hanson, F.; Dahdah, N.F. Comparative compositional study of crude oil solids from the Trans Alaska Pipeline System using high-temperature gas chromatography. Energy Fuels 2002, 16, 211–217. [Google Scholar] [CrossRef]
- Paso, K.G. Comprehensive treatise on shut-in and restart of waxy oil pipelines. J. Dispers. Sci. Technol. 2014, 35, 1060–1085. [Google Scholar] [CrossRef]
- Ekweribe, C.; Civan, F. Transient Wax Gel Formation Model for Shut-In Subsea Pipelines. J. Energy Resour. Technol. 2011, 133, 033001. [Google Scholar] [CrossRef]
- Hilbert, J. Flow Assurance: Wax Deposition & Gelling in Subsea Oil Pipelines. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, 18–20 October 2010. [Google Scholar]
- Venkatesan, R.; Nagarajan, N.; Paso, K.; Yi, Y.-B.; Sastry, A.; Fogler, H. The strength of paraffin gels formed under static and flow conditions. Chem. Eng. Sci. 2005, 60, 3587–3598. [Google Scholar] [CrossRef] [Green Version]
- Crake, W.S. Method for removing paraffin deposits. Google Patent US2695670A, 30 November 1954. [Google Scholar]
- Al-Yaari, M. Paraffin wax deposition: Mitigation and removal techniques. In Proceedings of the SPE Saudi Arabia section Young Professionals Technical Symposium, Dhahran, Saudi Arabia, 14–16 March 2011. [Google Scholar]
- Daccord, G.; Moser, D.; Samuel, M. Movable Well Bore Cleaning Device. U.S. Patent US2695670A, 2015. [Google Scholar]
- Jauregui, J.A.L.; Nunez Garcia, W.; Al Ismail, S.A.; Solares, J.R.; Ramanathan, V. Novel mechanical scale clean-out approach to remove iron sulphide scale from tubulars in vertical high pressure and temperature deep gas producers: A case history. In Proceedings of the EUROPEC/EAGE Conference and Exhibition, Amsterdam, The Netherlands, 8–11 June 2009. [Google Scholar]
- Ashton, J.; Kirspel, L.; Nguyen, H.; Credeur, D. In-situ heat system stimulates paraffinic-crude producers in Gulf of Mexico. SPE Prod. Eng. 1989, 4, 157–160. [Google Scholar] [CrossRef]
- Theyab, M. Experimental Methodology Followed to Evaluate Wa × Deposition Process. J. Pet. Environ. Biotechnol. 2018, 9, 2. [Google Scholar] [CrossRef]
- Matlach, W.; Newberry, M. Paraffin deposition and rheological evaluation of high wax content Altamont Crude Oils. In Proceedings of the SPE Rocky Mountain Regional Meeting, Salt Lake City, UT, USA, 22–25 May 1983. [Google Scholar]
- Bimuratkyzy, K.; Sagindykov, B. The Review of Flow Assurance Solutions with Respect to Wax and Asphaltene. Braz. J. Pet. Gas 2016, 10. [Google Scholar] [CrossRef]
- Sakthipriya, N.; Doble, M.; Sangwai, J.S. Enhanced microbial degradation of waxy crude oil: A review on current status and future perspective. Int. J. Oil Gas Coal Technol. 2017, 16, 130–165. [Google Scholar] [CrossRef]
- Etoumi, A. Microbial treatment of waxy crude oils for mitigation of wax precipitation. J. Pet. Sci. Eng. 2007, 55, 111–121. [Google Scholar] [CrossRef]
- Paso, K.; Viitala, T.; Aske, N.; Sjöblom, J. Wax deposition prevention by surface modifications: Materials evaluation. In Encyclopedia of Surface and Colloid Science, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kanicky, J.R.; Lopez-Montilla, J.-C.; Pandey, S.; Shah, D.O. Surface chemistry in the petroleum industry. In Handbook of Applied Surface and Colloid Chemistry; Wiley: Göteborg, Sweden, 2001; Volume 1, pp. 251–267. [Google Scholar]
- Musipov, H.; Akhmadulin, R.; Bakanovskaya, L. Wax Accumulation Prevention Method in Tubing; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 012018. [Google Scholar]
- França, D.; Pereira, V.B.; Coutinho, D.M.; Ainstein, L.M.; Azevedo, D.A. Speciation and quantification of high molecular weight paraffins in Brazilian whole crude oils using high-temperature comprehensive two-dimensional gas chromatography. Fuel 2018, 234, 1154–1164. [Google Scholar] [CrossRef]
- Mahé, L.; Courtiade, M.; Dartiguelongue, C.; Ponthus, J.; Souchon, V.; Thiébaut, D. Overcoming the high-temperature two-dimensional gas chromatography limits to elute heavy compounds. J. Chromatog. A 2012, 1229, 298–301. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Zhang, H.-Q.; Liu, Y.; Li, W. Treatment on oil/water gel deposition behavior in non-heating gathering and transporting process with polymer flooding wells. Environ. Earth Sci. 2017, 76, 326. [Google Scholar] [CrossRef]
- Silva, H.M.; Oliveira, J.R.; Peralta, J.; Zoorob, S.E. Optimization of warm mix asphalts using different blends of binders and synthetic paraffin wax contents. Constr. Build. Mater. 2010, 24, 1621–1631. [Google Scholar] [CrossRef]
- Piroozian, A.; Hemmati, M.; Ismail, I.; Manan, M.A.; Rashidi, M.M.; Mohsin, R. An experimental study of flow patterns pertinent to waxy crude oil-water two-phase flows. Chem. Eng. Sci. 2017, 164, 313–332. [Google Scholar] [CrossRef]
- Zaman, M.; Agha, K.; Islam, M. Laser based detection of paraffin in crude oil samples: Numerical and experimental study. Pet. Sci. Technol. 2006, 24, 7–22. [Google Scholar] [CrossRef]
- Masson, J.; Price, T.; Collins, P. Dynamics of bitumen fractions by thin-layer chromatography/flame ionization detection. Energy Fuels 2001, 15, 955–960. [Google Scholar] [CrossRef]
- Lu, X.; Kalman, B.; Redelius, P. A new test method for determination of wax content in crude oils, residues and bitumens. Fuel 2008, 87, 1543–1551. [Google Scholar] [CrossRef]
- Sarmento, R.; Ribbe, G.; Azevedo, L. Wax blockage removal by inductive heating of subsea pipelines. Heat Transf. Eng. 2004, 25, 2–12. [Google Scholar] [CrossRef]
- Chen, X.; Tsang, Y.; Zhang, H.-Q.; Chen, T.X. Pressure-wave propagation technique for blockage detection in subsea flowlines. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007. [Google Scholar]
- Aiyejina, A.; Chakrabarti, D.P.; Pilgrim, A.; Sastry, M.K.S. Wax formation in oil pipelines: A critical review. Int. J. Multiph. Flow 2011, 37, 671–694. [Google Scholar] [CrossRef]
- Scott, S.; Yi, J. Flow testing methods to detect and characterize partial blockages in looped subsea flowlines. J. Energy Resour. Technol. 1999, 121, 154–160. [Google Scholar] [CrossRef]
- Kök, M.V.; Varfolomeev, M.A.; Nurgaliev, D.K. Wax appearance temperature (WAT) determinations of different origin crude oils by differential scanning calorimetry. J. Pet. Sci. Eng. 2018, 168, 542–545. [Google Scholar] [CrossRef]
- Vieira, L.C.; Buchuid, M.B.; Lucas, E.F. Effect of pressure on the crystallization of crude oil waxes. II. Evaluation of crude oils and condensate. Energy Fuels 2009, 24, 2213–2220. [Google Scholar] [CrossRef]
- He, C.; Ding, Y.; Chen, J.; Wang, F.; Gao, C.; Zhang, S.; Yang, M. Influence of the nano-hybrid pour point depressant on flow properties of waxy crude oil. Fuel 2016, 167, 40–48. [Google Scholar] [CrossRef]
- Yao, B.; Li, C.; Yang, F.; Zhang, Y.; Xiao, Z.; Sun, G. Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel 2016, 184, 544–554. [Google Scholar] [CrossRef]
- Junyi, K.; Hasan, N. Review of the Factors that Influence the Condition of Wax Deposition in Subsea Pipelines. J. Eng. Mat. Manuf. 2018. [Google Scholar] [CrossRef]
- Kelechukwu, E.M.; Al Salim, H.S.S.; Yassin, A.A.M. Influencing factors governing paraffin wax deposition during crude production. Int. J. Phys. Sci. 2010, 5, 2351–2362. [Google Scholar]
- Mahto, V.; Kumar, A. Effect of several parameters on wax deposition in the flow line due to Indian waxy crude oil. Int. J. Appl. Eng. Res. Dev. 2013, 3, 1–10. [Google Scholar]
- Wang, J.; Zhou, F.; Zhang, L.; Huang, Y.; Yao, E.; Zhang, L.; Wang, F.; Fan, F. Experimental study of wax deposition pattern concerning deep condensate gas in Bozi block of Tarim Oilfield and its application. Thermochim. Acta 2019, 671, 1–9. [Google Scholar] [CrossRef]
- Nichita, D.V.; Goual, L.; Firoozabadi, A. Wax precipitation in gas condensate mixtures. SPE Prod. Facil. 2001, 16, 250–259. [Google Scholar] [CrossRef]
- Singh, A.; Lee, H.; Singh, P.; Sarica, C. Study of the Effect of Condensate Tie-back on Wax Deposition in an Indonesian Offshore Crude Oil Pipeline. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 25–28 March 2014. [Google Scholar]
Hydrogen Family | Most Important Hydrocarbons | Chemical Characteristics | Comments |
---|---|---|---|
Hydrocarbons | |||
Naphthenes | Cyclopentane, methyl cyclopentane, dimethylcyclopentane cyclohexane, and 1,2 dimethylcyclohexane | 5–6 carbon atoms in the ring |
|
Paraffins (Alkanes) | Methane, ethane, propane, butane, pentane, and hexane | Straight carbon chain |
|
Iso-paraffins (Iso-alkanes) | Isobutane, isopentane, neopentane, isooctane | Branched carbon chain |
|
Olefins (Alkenes) | Ethylene | One pair of carbon atoms |
|
Aromatics | Benzene, toluene, xylene, ethyl benzene, cumene, and naphthalene | Six carbon atoms in a ring, with three around the linkage |
|
Non-hydrocarbons | |||
Oxygen compounds | Naphthenic acids and Phenols | NM |
|
Sulphur compounds | Hydrogen sulphide and mercaptans | NM |
|
Nitrogen compounds | Quinoline, pyridine, pyrrole, indole, and carbazole | NM |
|
Region | Wax Content (wt, %) | API * Gravity | WAT (°C) | Pour Point (°C) | Reference |
---|---|---|---|---|---|
China | 18.25 | 24.2 | - | 43 | [46] |
Dulang, Malaysia | 3 | 12.6 | 31 | 33.76 | [47] |
Angsi, Malaysia | 2 | 42.6 | 28 | 33.32 | |
South America | NM ** | 27 | 36.4 | 9 | [48] |
Eastern Egyptian | 3.3–4.5 | - | - | - | [49] |
Upper Egypt | 11.92 | 31.6 | - | 27 | [50] |
South East Asia | 18–38 | 25–40 | 26–68 | 15–60 | [51] |
North Sea Crude oil | 15 | 33 | 42 | 27 | [52] |
Venezuelan (Boscan) | 4.1 | - | - | - | [53] |
Russian | 9.4–12.2 | - | - | - | |
Sudan | 21.2 | - | - | - | [54] |
Gulf of Mexico | 7.8 | [55] | |||
Mexico (PC) | 11.26 | 36 | - | −30 | [56] |
Mexico (IRI) | 10.91 | 28.4 | - | −26 | |
Iran | 13.1 | 34.9 | - | 26 | [57] |
India | 22.4 | 44.2 | - | 22 | [58] |
China (Changqing) | 20.78 | 34 | - | 30 | [59] |
Cold Fluid Injection | Contaminated Fluid Invasion | Cooling by Gas Expansion | High Flow Rate Through Formation | |
---|---|---|---|---|
Operation | Acidizing work | High The gas/oil ratio well | Flowing well | |
Fracturing work | CO2 flooding | Steam flooding | ||
Water flooding | Hot oiling work | Natural gas liquid (NGL) flooding | ||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Dalatony, M.M.; Jeon, B.-H.; Salama, E.-S.; Eraky, M.; Kim, W.B.; Wang, J.; Ahn, T. Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines. Energies 2019, 12, 967. https://doi.org/10.3390/en12060967
El-Dalatony MM, Jeon B-H, Salama E-S, Eraky M, Kim WB, Wang J, Ahn T. Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines. Energies. 2019; 12(6):967. https://doi.org/10.3390/en12060967
Chicago/Turabian StyleEl-Dalatony, Marwa M., Byong-Hun Jeon, El-Sayed Salama, Mohamed Eraky, Won Beom Kim, Jihoon Wang, and Taewoong Ahn. 2019. "Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines" Energies 12, no. 6: 967. https://doi.org/10.3390/en12060967
APA StyleEl-Dalatony, M. M., Jeon, B. -H., Salama, E. -S., Eraky, M., Kim, W. B., Wang, J., & Ahn, T. (2019). Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines. Energies, 12(6), 967. https://doi.org/10.3390/en12060967