Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms
Abstract
:1. Introduction
2. A Frandsen Generalized Wake Model (FGWM) for OSWFs
3. A Frandsen Generalized Normal Distribution Wake Model (FGNDWM) for OSWFs
4. Comparisons and Analysis of Two Different Wake Models for OSWFs
5. Experimental Comparisons and Analysis of Two Different Wake Models for OSWFs
6. Analysis and Enlightenment of Wind Rose, Wind Weibull Probability Density Distribution and ELM Prediction
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OSWFs | Off-Shore Wind Farms |
WT | Wind Turbine |
ELM | Extreme Learning Machine |
WP | Wind Power |
LES | Large-Eddy Simulation |
EEA | Extended Exergy Accounting |
WP | Wind Power |
HAWTs | Horizontal Axis Wind Turbines |
WF | Wind Farm |
WE | Wind Energy |
DFIG | Doubly-fed Induction Generator |
PMSG | Permanent Magnet Synchronous Generator |
FSIG | Fixed-Speed Induction Generator |
WTPGS | Wind Turbine Power Generation System |
FGWM | Frandsen Generalized Wake Model |
FGNDWM | Frandsen Generalized Normal Distribution Wake Model |
WSD | Wind Speed Deficit |
WD | Wind Direction |
AWD | Average Wind Direction |
References
- Marden, J.R.; Ruben, S.D.; Pao, L.Y. A Model-Free Approach to Wind Farm Control Using Game Theoretic Methods. IEEE Trans. Control Syst. Technol. 2013, 21, 1207–1214. [Google Scholar] [CrossRef]
- Pao, L.Y.; Johnson, K. A tutorial on the dynamics and control of wind turbines and wind farms. In Proceedings of the American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 2076–2089. [Google Scholar]
- Bitar, E.; Seiler, P. Coordinated control of a wind turbine array for power maximization. In Proceedings of the American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; pp. 2898–2904. [Google Scholar]
- Remmers, T.; Cawkwell, F.; Desmond, C.; Murphy, J.; Politi, E. The Potential of Advanced Scatterometer (ASCAT) 12.5 km Coastal Observations for Offshore Wind Farm Site Selection in Irish Waters. Energies 2019, 12, 206. [Google Scholar] [CrossRef]
- Hübler, C.; Weijtjens, W.; Gebhardt, C.G.; Rolfes, R.; Devriendt, C. Validation of Improved Sampling Concepts for Offshore Wind Turbine Fatigue Design. Energies 2019, 12, 603. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Lu, H.; Guo, Z. Research and application of a combined model based on variable weight for short term wind speed forecasting. Renew. Energy 2018, 116, 669–684. [Google Scholar] [CrossRef]
- Romanic, D.; Parvu, D.; Refan, M.; Hangan, H. Wind and tornado climatologies and wind resource modelling for a modern development situated in Tornado Alley. Renew. Energy 2018, 115, 97–112. [Google Scholar] [CrossRef]
- Ahmed, A.S. Wind energy characteristics and wind park installation in Shark El-Ouinat, Egypt. Renew. Sustain. Energy Rev. 2018, 82, 734–742. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Tabatabaei, M.; Hosseini, S.S.; Dashti, B.B.; Soufiyan, M.M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 2018, 171, 127–136. [Google Scholar] [CrossRef]
- Ahmad, T.; Basit, A.; Anwar, J.; Coupiac, O.; Kazemtabrizi, B.; Matthews, P.C. Fast Processing Intelligent Wind Farm Controller for Production Maximisation. Energies 2019, 12, 544. [Google Scholar] [CrossRef]
- Shakoor, R.; Hassan, M.Y.; Raheem, A.; Wu, Y.K. Wake effect modeling: A review of wind farm layout optimization using Jensen’s model. Renew. Sustain. Energy Rev. 2016, 58, 1048–1059. [Google Scholar] [CrossRef]
- Kuenzel, S.; Kunjumuhammed, L.; Pal, B.; Erlich, I. Impact of Wakes on Wind Farm Inertial Response. IEEE Trans. Sustain. Energy 2014, 5, 237–245. [Google Scholar] [CrossRef]
- Pan, L.; Voos, H.; Li, Y.; Darouach, M.; Xu, Y.; Hu, S. A wake interaction model for the coordinated control of Wind Farms. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–7. [Google Scholar]
- Pan, L.; Voos, H.; Pan, Y.; Darouach, M. A generalized interaction Wake Model with its variation for control in Wind Farms. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 8759–8764. [Google Scholar]
- Pan, L.; Voos, H.; Li, Y.; Xu, Y.; Darouach, M.; Li, Z. A class of Improved Wake Interaction Model for the coordinated control of wind farms. In Proceedings of the Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015; pp. 1322–1327. [Google Scholar]
- He, P.; Arefifar, S.A.; Li, C.; Wen, F.; Ji, Y.; Tao, Y. Enhancing Oscillation Damping in an Interconnected Power System with Integrated Wind Farms Using Unified Power Flow Controller. Energies 2019, 12, 322. [Google Scholar] [CrossRef]
- March, V. Key issues to define a method of lightning risk assessment for wind farms. Electr. Power Syst. Res. 2017, in press. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Zhang, X. The investigation of tower height matching optimization for wind turbine positioning in the wind farm. J. Wind Eng. Ind. Aerodyn. 2013, 114, 83–95. [Google Scholar] [CrossRef]
- Sørensen, K.L.; Galeazzi, R.; Odgaard, P.F.; Niemann, H.; Poulsen, N.K. Adaptive Passivity Based Individual Pitch Control for Wind Turbines in the Full Load Region. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 554–559. [Google Scholar]
- Barreiro-Gomez, J.; Ocampo-Martinez, C.; Bianchi, F.; Quijano, N. Model-free control for wind farms using a gradient estimation-based algorithm. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 1516–1521. [Google Scholar]
- Long, M.; Becerra, M.; Thottappillil, R. On the attachment of dart lightning leaders to wind turbines. Electr. Power Syst. Res. 2017, 151, 432–439. [Google Scholar] [CrossRef]
- Thukaram, D. Accurate modeling of doubly fed induction generator based wind farms in load flow analysis. Electr. Power Syst. Res. 2018, 155, 363–371. [Google Scholar]
- Farajzadeh, S.; Ramezani, M.H.; Nielsen, P.; Nadimi, E.S. Statistical modeling of the power grid from a wind farm standpoint. Electr. Power Syst. Res. 2017, 144, 150–156. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Shen, W.; Zhao, N.; Shen, Z. Development and validation of a new two-dimensional wake model for wind turbine wakes. J. Wind Eng. Ind. Aerodyn. 2015, 137, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Law, K.H. A data-driven, cooperative wind farm control to maximize the total power production. Appl. Energy 2016, 165, 151–165. [Google Scholar] [CrossRef]
- Marseglia, G.R.; Arbasini, A.; Grassi, S.; Raubal, M.; Raimondo, D.M. Optimal placement of wind turbines on a continuous domain: An MILP-based approach. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 5010–5015. [Google Scholar]
- Van Dam, F.; Gebraad, P.; van Wingerden, J.W. A maximum power point tracking approach for wind farm control. In Proceedings of the Science of Making Torque from Wind, Oldenburg, Germany, 9–11 October 2012. [Google Scholar]
- Chen, J. Development of offshore wind power in China. Renew. Sustain. Energy Rev. 2011, 15, 5013–5020. [Google Scholar] [CrossRef]
- Zhixin, W.; Chuanwen, J.; Qian, A.; Chengmin, W. The key technology of offshore wind farm and its new development in China. Renew. Sustain. Energy Rev. 2009, 13, 216–222. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Khayatiyan, A.; Farjah, E. A novel optimizing power control strategy for centralized wind farm control system. Renew. Energy 2016, 86, 399–408. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Z.; Chen, X. The decision model of 3-dimensional wind farm layout design. Renew. Energy 2016, 85, 248–258. [Google Scholar] [CrossRef]
- Varzaneh, S.G.; Abedi, M.; Gharehpetian, G. A new simplified model for assessment of power variation of DFIG-based wind farm participating in frequency control system. Electr. Power Syst. Res. 2017, 148, 220–229. [Google Scholar] [CrossRef]
- Hossain, M.E. A non-linear controller based new bridge type fault current limiter for transient stability enhancement of DFIG based Wind Farm. Electr. Power Syst. Res. 2017, 152, 466–484. [Google Scholar] [CrossRef]
- Yao, J.; Li, J.; Guo, L.; Liu, R.; Xu, D. Coordinated control of a hybrid wind farm with PMSG and FSIG during asymmetrical grid fault. Int. J. Electr. Power Energy Syst. 2018, 95, 287–300. [Google Scholar] [CrossRef]
- Li, D.Y.; Li, P.; Cai, W.C.; Song, Y.D.; Chen, H.J. Adaptive Fault Tolerant Control of Wind Turbines with Guaranteed Transient Performance Considering Active Power Control of Wind Farms. IEEE Trans. Ind. Electron. 2017, 65, 3275–3285. [Google Scholar] [CrossRef]
- Chaurasiya, P.K.; Ahmed, S.; Warudkar, V. Comparative analysis of Weibull parameters for wind data measured from met-mast and remote sensing techniques. Renew. Energy 2018, 115, 1153–1165. [Google Scholar] [CrossRef]
- Atighechi, H.; Hu, P.; Ebrahimi, S.; Lu, J.; Wang, G.; Wang, L. An effective load shedding remedial action scheme considering wind farms generation. Int. J. Electr. Power Energy Syst. 2018, 95, 353–363. [Google Scholar] [CrossRef]
- Suganthi, S.; Devaraj, D.; Ramar, K.; Thilagar, S.H. An Improved Differential Evolution algorithm for congestion management in the presence of wind turbine generators. Renew. Sustain. Energy Rev. 2018, 81, 635–642. [Google Scholar] [CrossRef]
- Wan, C.; Xu, Z.; Pinson, P.; Dong, Z.Y.; Wong, K.P. Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 2014, 29, 1033–1044. [Google Scholar] [CrossRef]
- Nikolić, V.; Motamedi, S.; Shamshirband, S.; Petković, D.; Ch, S.; Arif, M. Extreme learning machine approach for sensorless wind speed estimation. Mechatronics 2016, 34, 78–83. [Google Scholar] [CrossRef]
- Lazarevska, E. Wind speed prediction with extreme learning machine. In Proceedings of the 2016 IEEE 8th International Conference on Intelligent Systems (IS), Sofia, Bulgaria, 4–6 September 2016; pp. 154–159. [Google Scholar]
- Wu, S.; Wang, Y.; Cheng, S. Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 2013, 102, 163–175. [Google Scholar] [CrossRef]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Pookpunt, S.; Ongsakul, W. Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew. Energy 2013, 55, 266–276. [Google Scholar] [CrossRef]
- Iowa State University of Science and Technology The Iowa Environmental Mesonet (IEM). Available online: http://mesonet.agron.iastate.edu/ (accessed on 5 March 2019).
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. Neural Netw. 2006, 2, 985–990. [Google Scholar]
Cases | (m) | (m) | (m/s) | (m) | (m) | ||
---|---|---|---|---|---|---|---|
0.15 | 0.125 | 2.2 | 0.4194 | 0.00003 | 0.119 | 0.066 | |
66 | 65 | 6 | 0.3916 | 0.1 | 0.11 | 38.08 | |
66 | 98 | 6 | 0.2944 | 0.01 | 0.08 | 40.48 | |
82 | 75 | 6 | 0.2256 | 0.001 | 0.06 | 43.52 | |
70 | 65 | 6 | 0.2256 | 0.00001 | 0.062 | 41.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Xiao, H.; Pan, L.; Xu, C. Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms. Energies 2019, 12, 863. https://doi.org/10.3390/en12050863
Li M, Xiao H, Pan L, Xu C. Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms. Energies. 2019; 12(5):863. https://doi.org/10.3390/en12050863
Chicago/Turabian StyleLi, Mingcan, Hanbin Xiao, Lin Pan, and Chengjun Xu. 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms" Energies 12, no. 5: 863. https://doi.org/10.3390/en12050863
APA StyleLi, M., Xiao, H., Pan, L., & Xu, C. (2019). Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms. Energies, 12(5), 863. https://doi.org/10.3390/en12050863