An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields
Abstract
:1. Introduction
2. Mathematical Model
2.1. Kinetic Model of Volatilization Analysis
2.2. Heat Transfer Model
2.3. Model Parameters and Final Yields
3. Results and Discussion
3.1. Model Verification
3.2. Temperature Distribution and Volatile Component Yields
3.3. Effect of Particle Size on the Heat Transfer and Volatile Yield
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bejarano, P.A.; Levendis, Y.A. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust. Flame 2008, 153, 270–287. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; Luis, F. Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Liang, P.; Yu, J.; Zhu, J.-L.; Qin, X.-Z. Studies of granular bed filter for dust removal in the process of coal pyrolysis by solid heat carrier. RSC Adv. 2017, 7, 20266–20272. [Google Scholar] [CrossRef] [Green Version]
- Muto, M.; Yuasa, K.; Kurose, R. Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism. Adv. Powder Technol. 2018, 29, 1119–1127. [Google Scholar] [CrossRef]
- Sahu, S.G.; Mukherjee, A.; Kumar, M.; Adak, A.; Sarkar, P.; Biswas, S.; Tiwari, H.; Das, A.; Banerjee, P. Evaluation of combustion behaviour of coal blends for use in pulverized coal injection (PCI). Appl. Therm. Eng. 2014, 73, 1014–1021. [Google Scholar] [CrossRef]
- Rizkiana, J.; Guan, G.; Widayatno, W.B.; Yang, J.; Hao, X.; Matsuoka, K.; Abudula, A. Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass. RSC Adv. 2016, 6, 2096–2105. [Google Scholar] [CrossRef]
- Sadhukhan, A.K.; Gupta, P.; Saha, R.K. Modeling and experimental investigations on the pyrolysis of large coal particles. Energy Fuels 2011, 25, 5573–5583. [Google Scholar] [CrossRef]
- Adánez, J.; Abad, A.; Mendiara, T.; Gayán, P.; de Diego, L.; García-Labiano, F. Chemical looping combustion of solid fuels. Prog. Energy Combust. Sci. 2017, 65, 6–66. [Google Scholar] [CrossRef]
- Kobayashi, M.; Akiho, H. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature. J. Environ. Manag. 2017, 203, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Y.; Lai, D.; Geng, S.; Zhou, Q.; Gao, S.; Xu, G. Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas. Appl. Energy 2018, 215, 348–355. [Google Scholar] [CrossRef]
- Shu, Z.; Wang, J.; Fan, C.; Li, S. Multifluid Modeling of Mixing and Segregation of Binary Gas–Solid Flow in a Downer Reactor for Coal Pyrolysis. Ind. Eng. Chem. Res. 2014, 53, 9915–9924. [Google Scholar] [CrossRef]
- Shu, Z.; Fan, C.; Li, S.; Wang, J. Multifluid Modeling of Coal Pyrolysis in a Downer Reactor. Ind. Eng. Chem. Res. 2016, 55, 2634–2645. [Google Scholar] [CrossRef]
- Li, M.; Zeng, F.; Chang, H.; Xu, B.; Wang, W. Aggregate structure evolution of low-rank coals during pyrolysis by in-situ X-ray diffraction. Int. J. Coal Geol. 2013, 116, 262–269. [Google Scholar] [CrossRef]
- Nassini, D.; Fouga, G.G.; Nassini, H.E.; Bohé, A.E. Effects of pyrolysis conditions on the structure of chars prepared from an Argentine asphaltite. Fuel 2016, 182, 623–631. [Google Scholar] [CrossRef]
- Wen, H.; Lu, J.-H.; Xiao, Y.; Deng, J. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield. Thermochim. Acta 2015, 619, 41–47. [Google Scholar] [CrossRef]
- Lee, D.-W.; Bae, J.-S.; Park, S.-J.; Lee, Y.-J.; Hong, J.-C.; Choi, Y.-C. The Pore Structure Variation of Coal Char during Pyrolysis and Its Relationship with Char Combustion Reactivity. Ind. Eng. Chem. Res. 2012, 51, 13580–13588. [Google Scholar] [CrossRef]
- Bhoi, S.; Banerjee, T.; Mohanty, K. Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation. RSC Adv. 2016, 6, 2559–2570. [Google Scholar] [CrossRef]
- Gao, M.; Li, X.; Guo, L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics. Fuel Process. Technol. 2018, 178, 197–205. [Google Scholar] [CrossRef]
- Agarwal, P.; La Nauze, R. Transfer processes local to the coal particle: A review of drying, devolatilization and mass transfer in fluidized bed combustion. Chem. Eng. Res. Des. 1989, 67, 457–480. [Google Scholar]
- Fu, W.; Zhang, Y.; Han, H.; Duan, Y. A study on devolatilization of large coal particles. Combust. Flame 1987, 70, 253–266. [Google Scholar]
- Wan, K.; Wang, Z.; He, Y.; Xia, J.; Zhou, Z.; Zhou, J.; Cen, K. Experimental and modeling study of pyrolysis of coal, biomass and blended coal–biomass particles. Fuel 2015, 139, 356–364. [Google Scholar] [CrossRef]
- Badzioch, S.; Hawksley, P.G. Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Process Des. Dev. 1970, 9, 521–530. [Google Scholar] [CrossRef]
- Conesa, J.A.; Caballero, J.; Marcilla, A.; Font, R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim. Acta 1995, 254, 175–192. [Google Scholar] [CrossRef]
- Sommariva, S.; Maffei, T.; Migliavacca, G.; Faravelli, T.; Ranzi, E. A predictive multi-step kinetic model of coal devolatilization. Fuel 2010, 89, 318–328. [Google Scholar] [CrossRef]
- Chern, J.-S.; Hayhurst, A.N. A model for the devolatilization of a coal particle sufficiently large to be controlled by heat transfer. Combust. Flame 2006, 146, 553–571. [Google Scholar] [CrossRef]
- Chern, J.-S.; Hayhurst, A.N. A simple theoretical analysis of the pyrolysis of an isothermal particle of coal. Combust. Flame 2010, 157, 925–933. [Google Scholar] [CrossRef]
- Solomon, P.R.; Hamblen, D.G.; Carangelo, R.; Serio, M.; Deshpande, G. General model of coal devolatilization. Energy Fuels 1988, 2, 405–422. [Google Scholar] [CrossRef]
- De Girolamo, A.; Tan, V.; Liu, Z.; Zhang, L. Pyrolysis of a lignite briquette–Experimental investigation and 1-dimensional modelling approach. Fuel 2018, 212, 533–545. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Fletcher, T.H.; Dong, M.; Zhou, W. Simulation of the Evolution of Pressure in a Lignite Particle during Pyrolysis. Energy Fuels 2014, 28, 3511–3518. [Google Scholar] [CrossRef]
- Vand, V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. 1943, 55, 222. [Google Scholar] [CrossRef]
- Liu, J.; Ma, J.; Luo, L.; Zhang, H.; Jiang, X. Pyrolysis of superfine pulverized coal. Part 5. Thermogravimetric analysis. Energy Convers. Manag. 2017, 154, 491–502. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, D.; Ma, Z.; Yan, J. Models for the combustion of single solid fuel particles in fluidized beds: A review. Renew. Sustain. Energy Rev. 2017, 68, 410–431. [Google Scholar] [CrossRef]
- Solomon, P.R.; Serio, M.A.; Carangelo, R.M.; Markham, J.R. Very rapid coal pyrolysis. Fuel 1986, 65, 182–194. [Google Scholar] [CrossRef]
- Sadhukhan, A.K.; Gupta, P.; Saha, R.K. Modeling and experimental studies on single particle coal devolatilization and residual char combustion in fluidized bed. Fuel 2011, 90, 2132–2141. [Google Scholar] [CrossRef]
- Wang, J.; Lian, W.; Li, P.; Zhang, Z.; Yang, J.; Hao, X.; Huang, W.; Guan, G. Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer. Fuel 2017, 207, 126–135. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, F.; Li, H.; Wang, Y.; Dong, L.; Yu, J.; Xu, G. Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier. Appl. Energy 2014, 115, 9–16. [Google Scholar] [CrossRef]
- Pei, P.; Wang, Q.; Wu, D. Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis. Appl. Energy 2015, 156, 762–766. [Google Scholar] [CrossRef]
- Pei, P.; Wang, Q.; Wu, D. Application of regenerative high temperature air combustion technology on low-rank coal pyrolysis. Energy Procedia 2015, 66, 205–208. [Google Scholar] [CrossRef]
- Liu, X.; Pan, G.; Wang, G.; Wen, Z. Mathematical model of lump coal falling in the freeboard zone of the COREX melter gasifier. Energy Fuels 2011, 25, 5729–5735. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.; Pan, G.; Wen, Z. Numerical analysis of heat transfer and volatile evolution of coal particle. Fuel 2013, 106, 667–673. [Google Scholar] [CrossRef]
- Merrick, D. Mathematical models of the thermal decomposition of coal: 1. The evolution of volatile matter. Fuel 1983, 62, 534–539. [Google Scholar] [CrossRef]
- Merrick, D. Mathematical models of the thermal decomposition of coal: 3. Density, porosity and contraction behaviour. Fuel 1983, 62, 547–552. [Google Scholar] [CrossRef]
- Adesanya, B.A.; Pham, H.N. Mathematical modelling of devolatilization of large coal particles in a convective environment. Fuel 1995, 74, 896–902. [Google Scholar] [CrossRef]
- Song, H.; Liu, G.; Zhang, J.; Wu, J. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Process. Technol. 2017, 156, 454–460. [Google Scholar] [CrossRef]
- Zhang, L.; Hower, J.C.; Liu, W.-L. Non-isothermal TG-DSC study on prediction of caking properties of vitrinite-rich concentrates of bituminous coals. Fuel Process. Technol. 2017, 156, 500–504. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, Y.; Qiu, P.; Lin, D.; Qian, J.; Hou, H.; Pei, J. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks. Fuel 2018, 216, 521–530. [Google Scholar] [CrossRef]
- Zou, C.; Ma, C.; Zhao, J.; Shi, R.; Li, X. Characterization and non-isothermal kinetics of Shenmu bituminous coal devolatilization by TG-MS. J. Anal. Appl. Pyrolysis 2017, 127, 309–320. [Google Scholar] [CrossRef]
Parameter | CH4 | C2H6 | CO | CO2 | Tar | H2 | H2O | NH3 | H2S |
---|---|---|---|---|---|---|---|---|---|
E0/(MJ·kmol−1) | 183 | 183 | 183 | 183 | 183 | 183 | 183 | 183 | 183 |
2 | 4 | 4 | 4 | 8 | 4 | 8 | 4 | 4 | |
/(MJ·kmol−1) | 110 | 61 | 93 | 78 | 23.6 | 16.2 | 23.6 | 106 | 114 |
/(MJ·kmol−1) | 0 | 0 | 0 | 0 | 17.6 | 0 | 17.6 | 0 | 0 |
Parameter | Value or Equation | Reference |
---|---|---|
ρ 0 (kg·m−3) | 850 | [42] |
λ (J·kg−1·K−1) | [39,40,43] | |
cp (W·m−1·K−1) | [39,40,43] | |
ΔH (kJ·mol−1) | −300 | [39,40,43] |
Tg (℃) | 750 | - |
0.9 | [20] |
C | H | O | N | S | Volatile Matter | |
---|---|---|---|---|---|---|
Maltby | 83.8 | 5.3 | 7.1 | 1.8 | 2.0 | 36.3 |
Tar | 85 | 8.2 | 4.9 | 0.9 | 1.0 | - |
Char | 98 | 0.2 | 0.2 | 1.0 | 0.6 | - |
Product | Final Yield | Product | Final Yield |
---|---|---|---|
Char | 67.13 | Tar | 12.49 |
CH4 | 6.94 | H2 | 1.33 |
C2H6 | 1.17 | H2O | 4.82 |
CO | 2.27 | NH3 | 1.23 |
CO2 | 1.07 | H2S | 1.56 |
CH4 | C2H6 | CO | CO2 | Tar | H2 | H2O | NH3 | H2S | |
---|---|---|---|---|---|---|---|---|---|
Temp (°C) | 596.1 | 525.5 | 622.3 | 578.6 | 476.2 | - | 476.2 | 661.5 | 687.4 |
CH4 | C2H6 | CO | CO2 | Tar | H2 | H2O | NH3 | H2S | |
---|---|---|---|---|---|---|---|---|---|
Yield (% daf) | 5.01 | 1.17 | 2.15 | 1.06 | 12.49 | 0.38 | 4.82 | 1.03 | 1.17 |
Final yield (% daf) | 6.94 | 1.17 | 2.27 | 1.07 | 12.49 | 1.33 | 4.82 | 1.23 | 1.56 |
Ratio (%) | 72.19 | 100 | 94.71 | 99.07 | 100 | 28.57 | 100 | 83.74 | 75.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Huo, H.; Li, Q.; Dou, R.; Liu, X. An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields. Energies 2019, 12, 884. https://doi.org/10.3390/en12050884
Zhou W, Huo H, Li Q, Dou R, Liu X. An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields. Energies. 2019; 12(5):884. https://doi.org/10.3390/en12050884
Chicago/Turabian StyleZhou, Wenning, Hailong Huo, Qinye Li, Ruifeng Dou, and Xunliang Liu. 2019. "An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields" Energies 12, no. 5: 884. https://doi.org/10.3390/en12050884
APA StyleZhou, W., Huo, H., Li, Q., Dou, R., & Liu, X. (2019). An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields. Energies, 12(5), 884. https://doi.org/10.3390/en12050884