Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor
Abstract
:1. Introduction
- economic effects of fuelling the engine with CNG [32].
2. Materials and Methods
2.1. Stage 1
2.2. Stage 2
2.3. Stage 3
3. Results
3.1. Stage 1
3.2. Stage 2
3.3. Stage 3
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T. Alternative of biogas injection into the Danish gas grid system—A study from demand perspective. ChemEngineering 2018, 2, 43. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverinka, G.J.W.A. Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Wieczorek, N.; Kucuker, M.A.; Kuchta, K. Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresource Technol. 2015, 194, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Dębowski, M.; Zieliński, M.; Grala, A.; Dudek, M. Algae biomass as an alternative substrate in biogas production technologies—Review. Renew. Sustain. Energy Rev. J. 2013, 27, 596–604. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Gazda, W.; Stanek, W. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Appl. Energy 2016, 169, 138–149. [Google Scholar] [CrossRef]
- Ray, N.H.S.; Mohanty, M.K.; Mohanty, R.C. Biogas as Alternate Fuel in Diesel Engines: A Literature Review. J. Mech. Civ. Eng. 2013, 9, 23–28. [Google Scholar] [CrossRef]
- Subramanian, K.A.; Mathad, V.C.; Vijay, V.K.; Subbarao, P.M.V. Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer. Appl. Energy 2013, 105, 17–29. [Google Scholar] [CrossRef]
- Goulding, D.; Power, N. Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel? Renew. Energy 2013, 53, 121–131. [Google Scholar] [CrossRef]
- Lanzini, A.; Madi, H.; Chiodo, V.; Papurello, D.; Maisano, S.; Santarelli, M.; Van herle, J. Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. Prog. Energy Combust. Sci. 2017, 61, 150–188. [Google Scholar] [CrossRef]
- Papurello, D.; Lanzini, A.; Tognana, L.; Silvestri, S.; Santarelli, M. Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 2015, 85, 145–158. [Google Scholar] [CrossRef]
- Rathoda, V.; Bhalea, P.V. Experimental Investigation on Biogas Reforming for Syngas Production over an Alumina Based Nickel Catalyst. Energy Procedia 2014, 54, 236–245. [Google Scholar] [CrossRef]
- Vita, A.; Pino, L.; Cipitì, F.; Laganà, M.; Recupero, V. Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative condition and effect of nickel content. Fuel Process. Technol. 2014, 127, 47–58. [Google Scholar] [CrossRef]
- Krupa, M.; Moskalewicz, M.; Sikora, A.P.; Szurlej, A. Dimethyl ether. Properties, production technologies and the market. Przemysł Chemiczny 2014, 9, 1621–1627. (In Polish) [Google Scholar]
- Changa, A.C.C.; Lee, K.Y. Biogas reforming by the honeycomb reactor for hydrogen production. Int. J. Hydrogen Energy 2016, 41, 4358–4365. [Google Scholar] [CrossRef]
- Faria, E.C.; Neto, R.C.R.; Colman, R.C.; Noronha, F.B. Hydrogen production through CO2 reforming of methane over Ni/CeZrO2/Al2O3 catalysts. Catal. Today 2014, 228, 138–144. [Google Scholar] [CrossRef]
- Nwafor, O.M.I. Effect of choice of pilot fuel on the performance of natural gas in diesel engines. Renew. Energy 2000, 21, 495–504. [Google Scholar] [CrossRef]
- Selim, M.Y.E.; Radwan, M.S.; Saleh, H.E. Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds. Renew. Energy 2008, 33, 1173–1185. [Google Scholar] [CrossRef]
- Selim, M.Y.E. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines. Fuel 2005, 84, 961–971. [Google Scholar] [CrossRef]
- Banapurmath, N.R.; Gireesh, N.M.; Basavarajappa, Y.H.; Hosmath, R.S.; Yaliwal, V.S.; Pai, A.; Navale, K.G.; Jog, P.; Tewari, P.G. Effect of hydrogen addition to CNG in a biodiesel-operated dual-fuel engine. Int. J. Sustain. Eng. 2015, 8, 332–340. [Google Scholar] [CrossRef]
- Chuayboona, S.; Prasertsana, S.; Theppayaa, T.; Maliwana, K.; Prasertsanb, P. Effects of CH4, H2 and CO2 Mixtures on SI Gas Engine. Energy Procedia 2014, 52, 659–665. [Google Scholar] [CrossRef]
- Sidthiphong, W.; Swasdisevi, T.; Pisitsungkakarn, S.S.; Theinnoi, K. The Investigation of CNG Dual-Biodiesel fuel Approach to Address the Performance—Emission Assisted Multipurpose Diesel Engine. J. Ind. Technol. 2015, 11, 1–10. [Google Scholar]
- Basavarajappa, Y.H.; Banapurmath, N.R. Effect of CNG Manifold Injection on the Performance, Combustion and Emission Characteristics of a CNG-Biodiesel Dual Fuel Operation. Int. J. Autom. Eng. Technol. 2015, 4, 223–244. [Google Scholar]
- Basavarajappa, Y.H.; Banapurmath, N.R. Effect of Exhaust Gas Recirculation on the Performance and Emissions of a Dual Fuel Engine Operated on CNG-Biodiesel-Ethanol Blends. Int. J. Eng. Res. Technol. 2013, 2, 449–458. [Google Scholar]
- Banapurmath, N.R.; Marikatti, M.K.; Hunashyal, A.M.; Tewari, P.G. Combustion characteristics of a four-stroke CI engine operated on Honge and Jatropha oil methyl ester-ethanol blends when directly injected and dual fuelled with CNG induction. Int. J. Sustain. Eng. 2011, 4, 145–152. [Google Scholar] [CrossRef]
- Paul, A.; Bose, P.K.; Panua, R.S.; Banerjee, R. An experimental investigation of performance-emission trade off of a CI engine fueled by diesel–compressed natural gas (CNG) combination and diesel–ethanol blends with CNG enrichment. Energy 2013, 55, 787–802. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, C.S. Experimental investigation on the combustion and exhaust emission characteristics of biogas-biodiesel dual-fuel combustion in a CI engine. Fuel Process. Technol. 2011, 92, 992–1000. [Google Scholar] [CrossRef]
- Rose, L.; Hussain, M.; Ahmeda, S.; Malek, K.; Costanzo, R.; Kjeang, E. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city. Energy Policy 2013, 52, 453–461. [Google Scholar] [CrossRef]
- Kliucininkas, L.; Matulevicius, J.; Martuzevicius, D. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses. J. Environ. Manag. 2012, 99, 98–103. [Google Scholar] [CrossRef]
- Lejda, K.; Jaworski, A. Problemy Zasilania Gazowego Silników Rolniczych. Available online: http://www.pan-ol.lublin.pl/wydawnictwa/Motrol5/Lejda.pdf (accessed on 17 December 2018). (In Polish).
- Mierlo, J.V.; Messagie, M.; Rangaraju, S. Comparative environmental assessment of alternative fuelled vehicles using a life cycle assessment. Transp. Res. Procedia 2017, 25, 3435–3445. [Google Scholar] [CrossRef]
- Adelt, M.; Wolf, D.; Vogel, A. LCA of biomethane. J. Nat. Gas Sci. Eng. 2011, 3, 646–650. [Google Scholar] [CrossRef]
- Cong, R.-G.; Caro, D.; Thomsen, M. Is it beneficial to use biogas in the Danish transport sector?—An environmental-economic analysis. J. Clean. Prod. 2017, 165, 1025–1035. [Google Scholar] [CrossRef]
- Available online: http://www.wrp.pl/valtra-na-biogaz (accessed on 20 December 2018).
- Available online: https://cng.auto.pl/13521/ciagnik-zasilany-sprezonym-gazem-ziemnym-cng-biometan/ (accessed on 20 December 2018).
- Available online: http://www.tygodnik-rolniczy.pl/articles/technika/new-holland-stawia-na-biometan/ (accessed on 20 December 2018).
- Hosseini, S.E.; Wahid, M.A. Development of biogas combustion in combined heat and Power generation. Renew. Sustain. Energy Rev. 2014, 40, 868–875. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Utilization of biogas released from palm oil mill effluent for power generation using self-preheated reaktor. Energy Convers. Manag. 2015, 105, 957–966. [Google Scholar] [CrossRef]
- Lee, T.H.; Huang, S.R.; Chen, C.H. The experimental study on biogas power generation enhanced by using waste heat to preheat inlet gases. Renew. Energy 2013, 50, 342–347. [Google Scholar] [CrossRef]
- Szwaja, S.; Tutak, W.; Grab-Rogaliński, K.; Jamrozik, A.; Kociszewski, A. Selected combustion parameters of biogas at elevated pressure–temperature conditions. Combust. Engines 2012, 1, 40–47. (In Polish) [Google Scholar]
- Montoya, J.P.G.; Arrieta, A.A.A.; Lopez, J.F.Z. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence. Therm. Sci. 2015, 19, 1919–1930. [Google Scholar]
- Huang, J.; Crookes, R.J. Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel 1998, 77, 1793–1801. [Google Scholar] [CrossRef]
- Glarborg, P.; Bentzen, L.B. Chemical effects of a high CO2 concetration in oxy-fuel combustion of methane. Energy Fuel 2008, 22, 291–296. [Google Scholar] [CrossRef]
- Anderlohr, J.M.; Pires da Cruz, A.; Bounaceur, R.; Battin-Leclerc, F. Thermal and kinetic impact of CO, CO2 and H2O on the postoxiadtion of IC-engine exhaust gases. Combust. Sci. Technol. 2010, 182, 39–59. [Google Scholar] [CrossRef]
- Bari, S. Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine. Renew. Energy 1996, 9, 1007–1010. [Google Scholar] [CrossRef]
- Kruczyński, S.W.; Orliński, P.; Wojs, M.K.; Owczuk, M.; Matuszewska, A. Rating of occurrence of knock combustion in dual fuel CI engine powered by addition of biogas. Combust. Engines 2015, 162, 639–646. (In Polish) [Google Scholar]
- Kruczyński, S.W.; Orliński, P.; Wojs, M.K.; Owczuk, M. Ocena możliwości spalania biogazu w silniku o zapłonie samoczynnym z dawką pilotującą oleju napędowego. Zeszyty Naukowe Instytutu Pojazdów 2014, 100, 103–111. (In Polish) [Google Scholar]
- Owczuk, M.; Matuszewska, A.; Wojs, M.K.; Orliński, P.; Kruczyński, S.W. Influence of biogas composition on selected performance parameters of the engine. Przemysł Chemiczny 2016, 95, 2249–2253. (In Polish) [Google Scholar]
- Matuszewska, A.; Owczuk, M.; Zamojska-Jaroszewicz, A.; Jakubiak-Lasocka, J.; Lasocki, J.; Orliński, P. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Convers. Manag. 2016, 125, 309–319. [Google Scholar] [CrossRef]
- Ziółkowska, M.; Matuszewska, A.; Kruczyński, S.W.; Kamela, W. Wpływ biogazu rolniczego na właściwości eksploatacyjne oleju silnikowego. In Nowoczesne środki smarowe do specjalistycznych zastosowań w urządzeniach przemysłowych, transporcie i komunikacji; Krasodomski, M., Ed.; INiG PIB: Kraków, Poland, 2015; pp. 68–83. (In Polish) [Google Scholar]
Parameter | Analytical Method |
---|---|
Kinematic viscosity at 40 °C and 100 °C | PN-EN ISO 3104 |
Basic number | PN ISO 3771 |
Total sediments | own method |
Coking residues | PN-EN ISO 10370 |
Fuel content | PN/C-04083 |
Sulphated ash content | PN-ISO 3987 |
Ignition temperatures | PN-EN ISO 2719 |
Content of metallic elements | ASTM D 5185 |
Parameter | Fresh Oil | Sample after 140 mth | Sample after 200 mth |
---|---|---|---|
Kinematic viscosity in 40 °C, mm2/s | 111.7 | 104.7 | 102.6 |
Kinematic viscosity in 100 °C, mm2/s | 14.77 | 13.56 | 13.69 |
Basic number, mg KOH | 11.40 | 11.95 | 12.02 |
Total sediments, %, m/m | - | 0.08 | 0.03 |
Coking residues, %, m/m | 1.39 | 1.38 | 1.47 |
Fuel content, %, v/v | - | 0.6 | 0.8 |
Sulphated ash content, %, m/m | 1.35 | 1.33 | 1.34 |
Ignition temperatures, °C | 200 | 206 | 204 |
Content of Fe, ppm | - | 3.0 | 5.6 |
Content of Cu, ppm | - | 0.9 | 1.4 |
Content of Pb, ppm | - | 0.8 | 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owczuk, M.; Matuszewska, A.; Kruczyński, S.; Kamela, W. Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor. Energies 2019, 12, 1071. https://doi.org/10.3390/en12061071
Owczuk M, Matuszewska A, Kruczyński S, Kamela W. Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor. Energies. 2019; 12(6):1071. https://doi.org/10.3390/en12061071
Chicago/Turabian StyleOwczuk, Marlena, Anna Matuszewska, Stanisław Kruczyński, and Wojciech Kamela. 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor" Energies 12, no. 6: 1071. https://doi.org/10.3390/en12061071
APA StyleOwczuk, M., Matuszewska, A., Kruczyński, S., & Kamela, W. (2019). Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor. Energies, 12(6), 1071. https://doi.org/10.3390/en12061071