Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inocula and Substrate
2.2. Semi-Continuous Tests
2.3. Analytical Methods
2.4. Statistical Analysis
2.5. Economics
3. Results
3.1. Experimental Study
3.2. Feasibility Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
EBIT | earnings before interest and tax |
EBITDA | earnings before interest, taxes, depreciation and amortization |
EGM | extraordinary generator maintenance |
EPM | extraordinary plant maintenance |
EU | European Union |
FAN | free-ammonia nitrogen |
FOS/TAC | fatty acids/total alkalinity |
FSF | fine sieved fraction |
HRT | hydraulic retention time |
IRR | internal rate of return |
MSW | municipal solid waste |
NPV | net present value |
O&M | operation and maintenance |
OLR | organic loading rate |
PFSF | pressed fine sieve fraction |
PP | payback period |
TCI | total capital investment |
TIC | total installation cost |
WWTP | waste water treatment plant |
References
- Sahajwalla, V. Green processes: Transforming waste into valuable resources. Engineering 2018, 4, 309–310. [Google Scholar] [CrossRef]
- Lauer, M.; Thrän, D. Flexible biogas in future energy systems—Sleeping beauty for a cheaper power generation. Energies 2018, 11, 761. [Google Scholar] [CrossRef]
- Davis, L.A. The shale oil and gas revolution. Engineering 2018, 4, 438–439. [Google Scholar] [CrossRef]
- Chen, P.; Anderson, E.; Addy, M.; Zhang, R.; Cheng, Y.; Peng, P.; Ma, Y.; Fan, L.; Zhang, Y.; Lu, Q.; et al. Breakthrough technologies for the biorefining of organic solid and liquid wastes. Engineering 2018, 4, 574–580. [Google Scholar] [CrossRef]
- Matsakas, L.; Gao, Q.; Jansson, S.; Rova, U.; Christakopoulos, P. Green conversion of municipal solid wastes into fuels and chemicals. Electron. J. Biotechnol. 2017, 26, 69–83. [Google Scholar] [CrossRef]
- RedCorn, R.; Fatemi, S.; Engelberth, A.S. Comparing end-use potential for industrial food-waste sources. Engineering 2018, 4, 371–380. [Google Scholar] [CrossRef]
- Aryal, N.; Torben Kvist, T. Alternative of biogas injection into the Danish gas grid system—A study from demand perspective. ChemEngineering 2018, 2, 43. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Chacón-Pérez, Y.; Cardona-Alzate, C.A. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 2018, 33, 52–62. [Google Scholar] [CrossRef]
- Macedonio, F.; Drioli, E. Membrane engineering for green process engineering. Engineering 2017, 3, 290–298. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V. Biogas combustion: An introductory briefing. In Biogas: Production, Applications and Global Developments; Vico, A., Artemio, N., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 179–193. [Google Scholar]
- Wang, J.; Wang, H.; Fan, Y. Techno-economic challenges of fuel cell commercialization. Engineering 2018, 4, 352–360. [Google Scholar] [CrossRef]
- Huarachi-Oliveraa, R.; Dueñas-Gonzab, A.; Yapo-Parib, Y.; Vegab, P.; Romero-Ugarteb, M.; Tapiab, J.; Molinab, L.; Lazarte-Riverab, A.; Pacheco-Salazarc, D.D.; Esparza, M. Bioelectrogenesis with microbial fuel cells (MFCs) using the microalgaChlorella vulgarisand bacterial communities. Electron. J. Biotechnol. 2019, 37, 34–40. [Google Scholar]
- Chen, J.F. Green chemical engineering. Engineering 2017, 3, 283–284. [Google Scholar] [CrossRef]
- Wen-Wei, L.; Han-Qing, Y. Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment. Engineering 2016, 2, 438–446. [Google Scholar]
- Chen, J.F. Green chemical engineering for a better life. Engineering 2017, 3, 279. [Google Scholar] [CrossRef]
- Nelson, M.J.; Nakhla, G.; Zhu, J. Fluidized-bed bioreactor applications for biological wastewater treatment: A review of research and developments. Engineering 2017, 3, 330–342. [Google Scholar] [CrossRef]
- Boonpiyo, S.; Sittijunda, S.; Reungsang, A. Co-digestion of napier grass with food waste and napier silage with food waste for methane production. Energies 2018, 11, 3200. [Google Scholar] [CrossRef]
- De Souza Guimarães, C.; da Silva Maia, D.R.; Gonçalves Serra, E. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies 2018, 11, 870. [Google Scholar] [CrossRef]
- Achinas, S.; Euverink, G.J.W. Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material. Energies 2019, 12, 217. [Google Scholar] [CrossRef]
- Achinas, S.; Euverink, G.J.W. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron. J. Biotechnol. 2016, 23, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Reihani, S.F.S.; Khosravi-Darani, K. Influencing factors on single-cell protein production by submerged fermentation: A review. Electron. J. Biotechnol. 2019, 37, 34–40. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, X.; Xing, T.; Sun, Y.; Zhang, Y.; Luo, X.; Sun, Y. Digestion performance and microbial metabolic mechanism in thermophilic and mesophilic anaerobic digesters exposed to elevated loadings of organic fraction of municipal solid waste. Energies 2018, 11, 952. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 2011, 35, 992–998. [Google Scholar] [CrossRef]
- Wagner, O.; Lackner, N.; Mutschlechner, M.; Prem, E.M.; Markt, R.; Illmer, P. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 2018, 11, 1797. [Google Scholar] [CrossRef]
- Chiumenti, A.; Boscaro, D.; da Borso, F.; Sartori, L.; Pezzuolo, A. Biogas from fresh spring and summer grass: Effect of the harvesting period. Energies 2018, 11, 1466. [Google Scholar] [CrossRef]
- Ranieri, L.; Mossa, G.; Pellegrino, R.; Digiesi, S. Energy recovery from the organic fraction of Municipal Solid Waste: A real options-based facility assessment. Sustainability 2018, 10, 368. [Google Scholar] [CrossRef]
- Ghasimi, D.S.M.; de Kreuk, M.; Maeng, S.K.; Zandvoort, M.H.; van Lier, J.B. High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery. Appl. Energy 2016, 165, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Kasprzycka, A.; Kuna, J. Methodical aspects of biogas production in small-volume bioreactors in laboratory investigations. Energies 2018, 11, 1378. [Google Scholar] [CrossRef]
- Eaton, A.D.; American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2005. [Google Scholar]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.B.S.; Srinath, E.G. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, 835–849. [Google Scholar] [PubMed]
- German Solar Energy Society and Ecofys. Planning and Installing Bioenergy System: A Guide for Installers, Architect and Engineers, 1st ed.; James & James: London, UK, 2005. [Google Scholar]
- Piccinini, S. Le tecnologie di produzione del biogas. In Proceedings of the Seminar on IL Biogas: Modello di Calcolo a Supporto Della Fattibilità Tecnico-Economica (C.R.P.A.), Reggio Emilia, Italy, 30 May 2007. [Google Scholar]
- Ragazzoni, A.; Navarrotto, P.; Castellini, A.; devenuto, L.; Barbanti, L.; Capponi, S.; Banzato, D. Biogas. Come ottenere reddito per l‟agricoltura; Edizioni L‟Informatore Agrario S.p.A.: Verona, Italy, 2010. [Google Scholar]
- IEA Bioenergy. Process Monitoring in Biogas Plants; Technical Brochure; IEA Bioenergy: Paris, France, 2013; p. 39. [Google Scholar]
- Świątek, M.; Lewicki, A.; Szymanowska, D.; Kubiak, P. The effect of introduction of chicken manure on the biodiversity and performance of an anaerobic digester. Electron. J. Biotechnol. 2018. [Google Scholar] [CrossRef]
- Carotenuto, C.; Guarino, G.; Mario Minale, M. Temperature and pH effect on methane production from buffalo manure anaerobic digestion. Int. J. Heat Technol. 2016, 34, 425–429. [Google Scholar] [CrossRef]
- Franchi, O.; Rosenkranz, F.; Chamy, R. Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula. Electron. J. Biotechnol. 2018, 35, 33–38. [Google Scholar] [CrossRef]
- Lindner, J.; Zielonka, S.; Oechsner, H.; Lemmer, A. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ. Technol. 2015, 36, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.; Pohland, G.K. Anaerobic treatment applications and fundamentals: Substrate specificity during phase separation. Water Environ. Res. 1994, 66, 716–724. [Google Scholar] [CrossRef]
- Pontoni, L.; Panico, A.; Salzano, E.; Frunzo, L.; Iodice, P.; Pirozzi, F. Innovative parameters to control the efficiency of anaerobic digestion process. Chem. Eng. Trans. 2015, 43, 2089–2094. [Google Scholar]
- Andreozzi, R.; Di Somma, I.; Esposito, G.; Pontoni, L. From organic waste to bioenergy: Efficiency, reliability and safety aspects relating to biogas production, purification and utilization. In Environmental Science and Engineering Volume 5: Solid Waste Management; Sharma, U.C., Singh, N., Gurjar, B.R., Govil, J.N., Eds.; Studium Press LLC: Houston, TX, USA, 2017. [Google Scholar]
- Rosato, M.A. Redimensioning the Importance of the VFA/TA (FOS/TAC) Method. Available online: https://agronotizie.imagelinenetwork.com/bio-energie-rinnovabili/2015/01/08/ridimensionando-lrsquoimportanza-del-test-fostac/41369 (accessed on 17 March 2019).
- Ariunbaatar, J.; Scotto Di Perta, E.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.L.; Pirozzi, F. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Manag. 2015, 38, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Akindele, A.; Sartaj, M. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste. Waste Manag. 2018, 71, 757–766. [Google Scholar] [CrossRef]
- Calli, B.; Mertoglu, B.; Inanc, B.; Yenigun, O. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 2005, 40, 1285–1292. [Google Scholar] [CrossRef]
- Sun, L.; Müller, B.; Westerholm, M.; Schnürer, A. Syntrophic acetate oxidation in industrial CSTR biogas digesters. J. Biotechnol. 2014, 171, 39–44. [Google Scholar] [CrossRef]
- The Dutch Have Built a Cycle Lane from Used Toilet Paper. Available online: https://www.weforum.org/agenda/2017/10/the-dutch-have-built-a-cycle-lane-from-used-toilet-paper/ (accessed on 17 March 2019).
Parameter | Unit | IN1 | IN2 | PFSF |
---|---|---|---|---|
pH | - | 7.52 | 7.27 | ND |
TS | g∙kg−1 | 47.3 (0.8) | 112.9 (1.5) | 202.4 (12.9) |
VS | g∙kg−1 | 29.6 (0.4) | 61.5 (1.0) | 174.8 (6.3) |
VS/TS | - | 0.63 | 0.55 | 0.94 |
COD | g∙kg−1 | 50.3 (2.2) | 81.8 (3.9) | ND |
VS/COD | - | 0.59 | 0.75 | ND |
Reactors | IN1 (%) | IN2 (%) | Organic Load (g VSsubstrate·L−1) | Temperature (°C) | HRT (d) |
---|---|---|---|---|---|
R1 | 25 | 75 | 1.5 | 36 | 20 |
R2 | 25 | 75 | 1.5 | 36 | 20 |
Parameter | Unit | Base Scenario |
---|---|---|
Biogas yield | m3∙g VS−1 | 177.5 |
CH4 content | % | 63 |
Electricity produced from 1 m3 CH4 | kWh | 2 |
Heat produced from 1 m3 CH4 | kWh | 2.5 |
Total installation cost (TIC) | €∙kWinstalled−1 | 6000 |
Operational & maintenance cost | €∙kWh−1 | 0.065 |
Extraordinary generator cost | €∙kWh−1 | 0.002 |
Extraordinary plant cost | €∙kWh−1 | 0.005 |
Transport cost | €∙ton−1 | 2.5 |
Electricity price | €∙kWh−1 | 0.11 |
Heat price | €∙GJ−1 | 30 |
Unit | ||
---|---|---|
PFSF digested | ton∙year−1 | 10,000 |
Biogas produced | m3∙year−1 | 309,571 |
Methane produced | m3∙year−1 | 195,030 |
Operating time | hour | 8040 |
Electrical energy produced | MWh | 390 |
Heat energy produced | GJ | 1755 |
Total power installed-Pel. | kW | 49 |
Present | Year | Year | Year | Year | Year | Year | ||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 6 | 9 | 12 | |||
Investment | ||||||||
Paid capital | −291,089 | - | - | - | - | - | - | |
O&M cost | −25,354 | −25,354 | −25,354 | −25,354 | −25,354 | −25,354 | ||
EGM cost | −780 | −780 | −780 | −780 | −780 | −780 | ||
EPM cost | −1950 | −1950 | −1950 | −1950 | −1950 | −1950 | ||
Transport cost | −25,000 | −25,000 | −25,000 | −25,000 | −25,000 | −25,000 | ||
Total | −291,089 | −53,084 | −53,084 | −53,084 | −53,084 | −53,084 | −53,084 | |
Revenues | ||||||||
Electricity revenue | 42,907 | 42,907 | 42,907 | 42,907 | 42,907 | 42,907 | ||
Heat revenue | 52,658 | 52,658 | 52,658 | 52,658 | 52,658 | 52,658 | ||
Total revenues | 95,565 | 95,565 | 95,565 | 95,565 | 95,565 | 95,565 | ||
Cash flows | ||||||||
Gross cash flow | 42,480 | 42,480 | 42,480 | 42,480 | 42,480 | 42,480 | ||
EBITDA | 42,480 | 42,480 | 42,480 | 42,480 | 42,480 | 42,480 | ||
Asset value | 268,698 | 246,306 | 223,915 | 156,740 | 89,566 | 22,391 | ||
Fiscal depreciation | 22,391 | 22,391 | 22,391 | 22,391 | 22,391 | 22,391 | ||
EBIT | 20,089 | 20,089 | 20,089 | 20,089 | 20,089 | 20,089 | ||
Tax | 5,022 | 5,022 | 5,022 | 5,022 | 5,022 | 5,022 | ||
Net cash flow (NCF) | 37,458 | 37,458 | 37,458 | 37,458 | 37,458 | 37,458 | ||
Cumulative NCF | −248,033 | −210,575 | -173,117 | −60,743 | 51,631 | 164,005 | ||
Net discounted CF (NDCF) | 32,717 | 30,577 | 28,577 | 23,327 | 19,042 | 15,544 | ||
Cumulative NDCF | −248,033 | −210,575 | -173,117 | −99,949 | −38,732 | 11,240 | ||
Net present value (NPV) | 11,240 | |||||||
Internal rate of return (IRR) | 8% | |||||||
Payback period (PP) | 11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achinas, S.; Euverink, G.J.W. Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor. Energies 2019, 12, 1040. https://doi.org/10.3390/en12061040
Achinas S, Euverink GJW. Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor. Energies. 2019; 12(6):1040. https://doi.org/10.3390/en12061040
Chicago/Turabian StyleAchinas, Spyridon, and Gerrit Jan Willem Euverink. 2019. "Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor" Energies 12, no. 6: 1040. https://doi.org/10.3390/en12061040
APA StyleAchinas, S., & Euverink, G. J. W. (2019). Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor. Energies, 12(6), 1040. https://doi.org/10.3390/en12061040