Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System
Abstract
:1. Introduction
2. Overview of Finite Element Analysis for the Evaluation of the Potential Transfer from Isolated Grounding Systems
3. The FEM-DBCI Method
4. Numerical Results
4.1. A Single Rod Vertically Buried in a Homogeneous Soil
4.2. Transferred Potential from an Active to a Passive Grounding System
4.3. Transferred Potential from an Active to a Metal Rail
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
GS | grounding system |
TP | transferred potential |
FEM | finite element method |
FEM-DBCI | FEM-Dirichlet boundary condition iteration |
FDM | finite difference method |
BEM | boundary element method |
MoM | method of moments |
h | overlying layer depth |
σ1 | overlying layer conductivity |
σ0 | underlying infinite layer conductivity |
V0 | voltage of the active GS at the ground surface |
ΓT | truncation boundary |
Γ0 | soil surface |
D | analysis domain |
σc | metal conductivity |
Sc | cross section area |
ηs | numerical coefficient accounting for symmetry planes |
E | triple integral relative to the stiffness matrix of 1-D element |
αm | shape function of the m-th |
A, AT | sparse matrices of geometrical coefficients |
b0 | known term array due to the assigned voltages |
ΓM | closed surface (inside ΓT) enclosing all the conductors and non-homogeneities |
References
- Di Silvestre, M.L.; Favuzza, S.; Mangione, S.; Mineo, L. On the interconnections of HV-MV stations to global grounding systems. IEEE Trans. Ind. Appl. 2019, 55. [Google Scholar] [CrossRef]
- Phayomhom, A.; Sirisumrannukul, S.; Kasirawat, T.; Puttarach, A. Safety design improvement of grounding system by compression ratio and ground rod layout methods: Case study of metropolitan electricity authority’s power distribution system. Presented at the CIGRE Session 45—45th International Conference on Large High Voltage Electric Systems, Paris, France, 24–30 August 2014. [Google Scholar]
- Lee, C.H.; Meliopoulos, A.S. A comparison of IEC 479-1 and IEEE Std 80 on grounding safety criteria. Proc. Natl. Sci. Counc. Repub. China Part A Phys. Sci. Eng. 1999, 23, 612–621. [Google Scholar]
- Lee, C.H. Safety assessment of bulk and traction supply substations in Taipei rail transit systems. IEEE Trans. Power Deliv. 2004, 19, 1078–1084. [Google Scholar] [CrossRef]
- Freschi, F.; Mitolo, M.; Tartaglia, M. Interferences phenomena between separate grounding systems. IEEE Trans. Ind. Appl. 2014, 50, 2853–2860. [Google Scholar] [CrossRef]
- Mangione, S.; Mineo, L. Safety concerns on ground fault application transfer phenomenon in HV installations. In Proceedings of the IEEE Symposium on Product Compliance Engineering, Longmont, CO, USA, 22–23 October 2007. [Google Scholar] [CrossRef]
- Chou, C.; Liu, C. Assessment of risks from ground fault transfer on closed-loop HV underground distribution systems with cables running in a common route. IEEE Trans. Power Deliv. 2013, 28, 1015–1023. [Google Scholar] [CrossRef]
- Bhang, B.G.; Kim, G.G.; Cha, H.L.; Kim, D.K.; Choi, J.H.; Park, S.Y.; Ahn, H.K. Design methods of underwater grounding electrode array by considering inter-electrode interference for floating PVs. Energies 2018, 11, 982. [Google Scholar] [CrossRef]
- Garrett, D.L.; Wallace, K.A. A critical analysis of grounding practices for railroad tracks in electric utility stations. IEEE Trans. Power Deliv. 1993, 8, 90–96. [Google Scholar] [CrossRef]
- Lorentzou, M.I.; Hatziargyriou, N.D.; Papadias, B.C. Analysis of wind turbine grounding systems. In Proceedings of the 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries, Lemesos, Cyprus, 29–31 May 2000; pp. 936–939. [Google Scholar] [CrossRef]
- Parise, G.; Parise, L.; Martirano, L. Identification of global grounding systems: The global zone of influence. IEEE Trans. Ind. Appl. 2015, 51, 5044–5049. [Google Scholar] [CrossRef]
- Martin, A.R. Safety issues and damage to equipment with both Smart Grid and home network connections. In Proceedings of the IEEE Symposium on Product Compliance Engineering Proceedings, Boston, MA, USA, 5–7 May 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Pons, E.; Colella, P.; Tommasini, R.; Napoli, R.; Montegiglio, P.; Cafaro, G.; Torelli, F. Global earthing system: Can buried metallic structures significantly modify the ground potential profile. IEEE Trans. Ind. Appl. 2015, 51, 5237–5246. [Google Scholar] [CrossRef]
- Suresh, K.; Paranthaman, S. Transferred potential—A hidden killer of many linemen. IEEE Trans. Ind. Appl. 2015, 51, 2691–2699. [Google Scholar] [CrossRef]
- Leschert, D.; Iwasykiw, G.; Derworiz, R. Substation grounding transfer of potential case studies. IEEE Trans. Ind. Appl. 2016, 52, 661–667. [Google Scholar] [CrossRef]
- Trlep, M.; Hamler, A.; Jesenik, M.; Stumberger, B. The FEM-BEM analysis of complex grounding systems. IEEE Trans. Magn. 2003, 39, 1155–1158. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Rizzo, S.A.; Salerno, N. Efficient analysis of grounding systems by means of the hybrid FEM–DBCI method. IEEE Trans. Ind. Appl. 2015, 51, 5159–5166. [Google Scholar] [CrossRef]
- Dawalibi, F.; Mukhedkar, D. Transferred earth potentials in power systems. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 90–101. [Google Scholar] [CrossRef]
- Simpson, I.B.K.; Bensted, D.J.; Dawalibi, F.; Blix, E.D. Computer analysis of impedance effects in large grounding systems. IEEE Trans. Ind. Appl. 1987, IA-23, 490–497. [Google Scholar] [CrossRef]
- Wu, A.Y.; Meliopoulos, A.P. Analysis of ground potential gradients around power substations. In Proceedings of theAnnual Technical Conference on Pulp and Paper Industry, Seattle, WA, USA; 1990; pp. 56–66. [Google Scholar] [CrossRef]
- Ala, G.; Favuzza, S.; Francomano, E.; Giglia, G.; Zizzo, G. On the distribution of lightning current among interconnected grounding systems in medium voltage grids. Energies 2018, 11, 771. [Google Scholar] [CrossRef]
- Navarrina, F.; Colominas, I.; Casteleiro, M. Why do computer methods for grounding analysis produce anomalous results? IEEE Trans. Power Deliv. 2003, 18, 1192–1202. [Google Scholar] [CrossRef] [Green Version]
- Brenna, M.; Foiadelli, F.; Longo, M.; Zaninelli, D. Particular grounding systems analysis using FEM models. In Proceedings of the International Conference on Harmonics and Quality of Power, Ljubljana, Slovenia, 13–16 May 2018. [Google Scholar] [CrossRef]
- Guemes, J.A.; Hernando, F.E. Method for calculating the ground resistance of grounding grids using FEM. IEEE Trans. Power Deliv. 2004, 19, 595–600. [Google Scholar] [CrossRef]
- Guemes, J.A.; Hernando-Fernandez, F.E.; Rodriguez-Bona, F.; Ruiz-Moll, J.M. A practical approach for determining the ground resistance of grounding grids. IEEE Trans. Power Deliv. 2006, 21, 1261–1266. [Google Scholar] [CrossRef]
- Trlep, M.; Hamler, A.; Hribernik, B. The analysis of complex grounding systems by FEM. IEEE Trans. Magn. 1998, 34, 2521–2524. [Google Scholar] [CrossRef]
- Silva, V.C.; Martinho, L.B.; Cardoso, J.R.; Filho, M.L.P.; Verardi, S.L.L. Efficient modeling of thin wires in a lossy medium by finite elements applied to grounding systems. IEEE Trans. Magn. 2011, 47, 966–969. [Google Scholar] [CrossRef]
- Chen, J.; Liao, W.; Wang, Y.; Liu, X. Finite-difference analysis of the potential distribution around an L-shape building base under the measurement of grounding resistance. In Proceedings of the Asia-Pacific International Conference on Lightning, Chengdu, China, 1–4 November 2011. [Google Scholar] [CrossRef]
- Talaat, M.; Farahat, M.A.; Essa, M.A.; Maowwad, M.S. Simulation of the electric field and the GPR resulting from vertical-driven rods earthing system in a multi-layers earth structure. Measurement 2019, 132, 387–401. [Google Scholar] [CrossRef]
- Liu, J.; Lin, G.; Wang, F.; Li, J. The scaled boundary finite element method applied to electromagnetic field problems. IOP Conf. Ser. Mater. Sci. Eng. 2014, 10, 012245. [Google Scholar] [CrossRef]
- Colominas, I.; Navarrina, F.; Casteleiro, M. Boundary element formulation for the analysis of transferred potentials in electrical installations. Adv. Eng. Softw. 2004, 35, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Colominas, I.; Navarrina, F.; Casteleiro, M. Analysis of transferred earth potentials in grounding systems: A BEM numerical approach. IEEE Trans. Power Deliv. 2005, 20, 339–345. [Google Scholar] [CrossRef]
- Faleiro, E.; Pazos, F.J.; Asensio, G.; Denche, G.; García, D.; Moreno, J. Interaction between interconnected and isolated grounding systems: A case study of transferred potentials. IEEE Trans. Power Deliv. 2015, 30, 2260–2267. [Google Scholar] [CrossRef]
- Colominas, I.; Navarrina, F.; Casteleiro, M. Numerical simulation of transferred potentials in earthing grids considering layered soil models. IEEE Trans. Power Deliv. 2007, 22, 1514–1522. [Google Scholar] [CrossRef]
- Zildzo, H.; Muharemovic, A.; Turkovic, I.; Matoruga, H. Numerical calculation of floating potentials for large earthing system. In Proceedings of the XXII International Symposium on Information, Communication and Automation Technologies, Bosnia, Serbia, 29–31 October 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Colominas, I.; París, J.; Guizán, R.; Navarrina, F.; Casteleiro, M. Numerical modeling of grounding systems for aboveground and underground substations. IEEE Trans. Ind. Appl. 2015, 51, 5107–5115. [Google Scholar] [CrossRef]
- Silvester, P.P.; Ferrari, R.L. Finite Elements for Electrical Engineers, 3rd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Aiello, G.; Alfonzetti, S.; Coco, S. Charge iteration: A procedure for the finite element computation of unbounded electrical fields. Int. J. Numer. Methods Eng. 1994, 37, 4147–4166. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Salerno, N. Improved Selection of the Integration Surface in the Hybrid FEM-DBCI Method. IEEE Trans. Magn. 2010, 46, 3357–3360. [Google Scholar] [CrossRef]
- Alfonzetti, S.; Salerno, N. A Non-Standard Family of Boundary Elements for the Hybrid FE-BE Method. IEEE Trans. Magn. 2009, 45, 1312–1315. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Borzì, G.; Rizzo, S.A.; Salerno, N. A Comparison between Hybrid Methods: FEM-BEM versus FEM-DBCI. Int. J. Comput. Math. Electr. Electron. Eng. (COMPEL) 2013, 32, 1901–1911. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Borzì, G.; Dilettoso, E.; Salerno, N. A GMRES Iterative Solution of FEM-BEM Global Systems in Skin Effect Problems. Int. J. Comput. Math. Electr. Electron. Eng. (COMPEL) 2008, 27, 1286–1295. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Borzì, G.; Salerno, N. An Overview of the ELFIN Code for Finite Element Research in Electrical Engineering. In Software for Electrical Engineering Analysis and Design IV; Wessex Institute of Technology Press: Southampton, UK, 1999; pp. 143–152. [Google Scholar]
- Beirão, P.J.B.F.N.; Malça, C.M.S.P.; Felismina, R.P. Influence of design parameters on the structural and fatigue behaviors of a floating point wave energy converter. AIMS Energy 2017, 5, 209–223. [Google Scholar]
s (m) | Rg (Ω) | Tetrahedra | Nodes | CPU Time (s) 1 |
---|---|---|---|---|
0.1000 | 9.366 | 3667 | 1060 | 0. 02 |
0.0500 | 10.62 | 7793 | 2227 | 0.06 |
0.0250 | 11.46 | 14249 | 3989 | 0.20 |
0.0125 | 12.69 | 29575 | 8307 | 0.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, G.; Alfonzetti, S.; Rizzo, S.A.; Salerno, N. Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System. Energies 2019, 12, 1210. https://doi.org/10.3390/en12071210
Aiello G, Alfonzetti S, Rizzo SA, Salerno N. Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System. Energies. 2019; 12(7):1210. https://doi.org/10.3390/en12071210
Chicago/Turabian StyleAiello, Giovanni, Salvatore Alfonzetti, Santi Agatino Rizzo, and Nunzio Salerno. 2019. "Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System" Energies 12, no. 7: 1210. https://doi.org/10.3390/en12071210
APA StyleAiello, G., Alfonzetti, S., Rizzo, S. A., & Salerno, N. (2019). Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System. Energies, 12(7), 1210. https://doi.org/10.3390/en12071210