The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner
Abstract
:1. Introduction
2. The Design of a New Biofuel Burner
3. Materials and Methods
3.1. Materials
3.2. Methodology
3.2.1. Humidity of the Fuel
3.2.2. Flue Gas Analysis
3.2.3. Temperature Measurements
4. Results and Discussion
- drying of fuel,
- fuel combustion,
- secondary air,
- inside the combustion chamber 100 mm from the axis of the burner,
- inside the combustion chamber 180 mm from the axis of the burner,
- flue gas outlet to the boiler.
4.1. The Exhaust Gas Analysis
4.2. Summary of Biofuel Burner Characteristics
5. Conclusions
- The fuel that achieved the best burning parameters was wood pellets made of pine. Its calorific value is 19.4 MJ/kg and the combustion temperature was 1235 °C.
- In the case of lignite, the average exhaust gas temperature was 1089 °C; for straw pellets it was 993 °C, and for sunflower pellets 1212 °C.
- The measurements made with the exhaust gas analyzer show that the proposed burner solution meets the emission standards regarding the content of impurities in the exhaust.
- The laboratory combustion curve from the literature coincides with the results of the measurements carried out.
- It should be noted that especially emission of ash from a modernized burner is lower than from a traditional one.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Handayani, K.; Krozer, Y.; Filatova, T. From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning. Energy Policy 2019, 127, 134–146. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitková, M. Fossil fuel energy consumption in European countries. Energy Procedia 2018, 153, 107–111. [Google Scholar] [CrossRef]
- Mączyńska, J.; Krzywonos, M.; Kupczyk, A.; Tucki, K.; Sikora, M.; Pińkowska, H.; Bączyk, A.; Wielewska, I. Production and use of biofuels for transport in Poland and Brazil—The case of bioethanol. Fuel 2019, 241, 989–996. [Google Scholar] [CrossRef]
- Gökgöz, F.; Güvercin, M.T. Energy security and renewable energy efficiency in EU. Renew. Sustain. Energy Rev. 2018, 96, 226–239. [Google Scholar] [CrossRef]
- Rybak, W. Spalanie i Współspalanie Biopaliw Stałych, 1st ed.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2006; p. 80. [Google Scholar]
- Ashter, S.A. Biomass and its sources. In Technology and Applications of Polymers Derived from Biomass, 1st ed.; William Andrew: Cambridge, MA, USA, 2018; pp. 11–36. [Google Scholar]
- Bunn, D.W.; Redondo-Martin, J.; Munoz-Hernandez, J.I.; Diaz-Cachinero, P. Analysis of coal conversion to biomass as a transitional technology. Renew. Energy 2019, 132, 752–760. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Royo, J.; Canalis, P.; Quintana, D.; Diaz-Ramirez, M.; Sin, A.; Rezeau, A. Experimental study on the ash behaviour in combustion of pelletized residual agricultural biomass. Fuel 2019, 239, 991–1000. [Google Scholar] [CrossRef]
- Zeng, T.; Weller, N.; Pollex, A.; Lenz, V. Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel 2016, 184, 689–700. [Google Scholar] [CrossRef]
- Lu, J.; Fu, L.; Li, X.; Eddings, E. Capture efficiency of coal/biomass co-combustion ash in an electrostatic field. Particuology 2018, 40, 80–87. [Google Scholar] [CrossRef]
- Kažimírová, V.; Opáth, R. Biomass combustion emissions. Res. Agric. Eng. 2016, 62, 61–65. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, H.H. Examining the efficiency of biomass energy: Evidence from the Chinese recycling industry. Energy Policy 2018, 119, 77–86. [Google Scholar] [CrossRef]
- Neuenschwander, P.; Good, J.; Nussbaumer, T. Combustion Efficiency in Biomass Furnaces with Flue Gas Condensation. Biomass for Energy and Industry, 10th European Conference and Technology Exhibition. Available online: http://www.bfe.admin.ch/php/modules/enet/streamfile.php?file=000000000374.pdf (accessed on 17 February 2019).
- Gil, M.V.; González-Vázquez, M.P.; García, R.; Rubiera, F.; Pevida, C. Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Convers. Manag. 2019, 184, 649–660. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, F.; Si, T.; Zhou, J.; Cen, K. Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Process. Technol. 2018, 179, 229–237. [Google Scholar] [CrossRef]
- Jamradloedluk, J.; Lertsatitthanakorn, C. Influences of Mixing Ratios and Binder Types on Properties of Biomass Pellets. Energy Procedia 2017, 138, 1147–1152. [Google Scholar] [CrossRef]
- Singh, K.; Zondlo, J. Characterization of fuel properties for coal and torrefied biomass mixtures. J. Energy Inst. 2017, 90, 505–512. [Google Scholar] [CrossRef]
- Xinfeng, W.; Rongrong, G.; Liwei, W.; Wenxue, X.; Yating, Z.; Bing, C.; Weijun, L.; Likun, X.; Jianmin, C.; Wenxing, W. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass. Environ. Pollut. 2017, 230, 405–412. [Google Scholar]
- Xingru, L.; Lei, J.; Yu, B.; Yang, Y.; Shuiqiao, L.; Xi, C.; Jing, X.; Yusi, L.; Yingfeng, W.; Xueqing, G.; et al. Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission. Atmos. Res. 2019, 218, 25–33. [Google Scholar]
- Guo, F.; Zhong, Z. Optimization of the co-combustion of coal and composite biomass pellets. J. Clean. Prod. 2018, 185, 399–407. [Google Scholar] [CrossRef]
- Xu, G.; Li, M.; Lu, P. Experimental investigation on flow properties of different biomass and torrefied biomass powders. Biomass Bioenergy 2019, 122, 63–75. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew. Sustain. Energy Rev. 2016, 53, 1333–1347. [Google Scholar] [CrossRef]
- Kosowski, K.; Tucki, K.; Piwowarski, M.; Stępień, R.; Orynycz, O.; Włodarski, W.; Bączyk, A. Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+. Sustainability 2019, 11, 554. [Google Scholar] [CrossRef]
- Kosowski, K.; Tucki, K.; Piwowarski, M.; Stępień, R.; Orynycz, O.; Włodarski, W. Thermodynamic cycle concepts for high-efficiency power plants. Part B: Prosumer and distributed power industry. Sustainability 2019, in press. [Google Scholar]
- Stam, A.F.; Brem, G. Fouling in coal-fired boilers: Biomass co-firing, full conversion and use of additives—A thermodynamic approach. Fuel 2019, 239, 1274–1283. [Google Scholar] [CrossRef]
- Kalina, J.; Świerzewski, M.; Strzałka, R. Operational experiences of municipal heating plants with biomass-fired ORC cogeneration units. Energy Convers. Manag. 2019, 181, 544–561. [Google Scholar] [CrossRef]
- Junga, R.; Pospolita, J.; Niemiec, P.; Dudek, M. The assessment of the fuel additive impact on moving grate boiler efficiency. J. Energy Inst. 2018, in press. [Google Scholar] [CrossRef]
- Vakkilainen, E.K. Fluidized Bed Boilers for Biomass. In Steam Generation from Biomass. Construction and Design of Large Boilers, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 18–179. [Google Scholar]
- Zhang, Y.; Li, Q.; Zhou, H. Heat Transfer Calculation in Furnaces. In Theory and Calculation of Heat Transfer in Furnaces, 1st ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 131–203. [Google Scholar]
- Tinajero, J.; Dunn-Rankin, D. Non-premixed axisymmetric flames driven by ion currents. Combust. Flame 2019, 199, 365–376. [Google Scholar] [CrossRef]
- Weinberg, F.; Carleton, F.; Dunn-Rankin, D. Electric field-controlled mesoscale burners. Combust. Flame 2008, 152, 186–193. [Google Scholar] [CrossRef]
- Kosowski, K. Steam and Gas Turbines with the Examples of Alstom Technology; Alstom: Saint-Ouen, France, 2007; ISBN 978-83-925959-3-9. [Google Scholar]
- Růžičková, J.; Kucbel, M.; Raclavská, H.; Švédová, B.; Raclavský, K.; Juchelková, D. Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. J. Environ. Manag. 2019, 236, 769–783. [Google Scholar] [CrossRef]
- Caposciutti, G.; Barontini, F.; Antonelli, M.; Galletti, C.; Tognotti, L.; Desideri, U. Biomass early stage combustion in a small size boiler: Experimental and numerical analysis. Energy Procedia 2018, 148, 1159–1166. [Google Scholar] [CrossRef]
- Golec, T.; Remiszewski, K.; Świątkowski, B.; Błesznowski, M. Pulverized biomass burners. Energetyka 2007, 5, 375–382. [Google Scholar]
- González-Cencerrado, A.; Peña, B.; Gil, A. Experimental analysis of biomass co-firing flames in a pulverized fuel swirl burner using a CCD based visualization system. Fuel Process. Technol. 2015, 130, 299–310. [Google Scholar] [CrossRef]
- Peña, B.; Pallarés, J.; Bartolomé, C.; Herce, C. Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners. Energy 2018, 157, 45–53. [Google Scholar] [CrossRef]
- Ti, S.; Chen, Z.; Kuang, M.; Li, Z.; Zhu, Q.; Zhang, H.; Wang, Z.; Xu, G. Numerical simulation of the combustion characteristics and NOx emission of a swirl burner: Influence of the structure of the burner outlet. Appl. Therm. Eng. 2016, 104, 565–576. [Google Scholar] [CrossRef]
- Kołodziejczyk, U. Characteristics of brown coal deposits in lubuskie province. Zeszyty Naukowe. Inżynieria Środowiska/Uniwersytet Zielonogórski 2010, 137, 169–179. [Google Scholar]
- Gil, P.; Wilk, J.; Tychanicz, M.; Wielgos, S. Preliminary experimental investigation of the automatic pellet boiler according to the PN-EN 303-5:2012 standard requirements. Rynek Energii 2017, 5, 74–79. [Google Scholar]
- Research Report No 191/18-LG Test of Boiler Type BIO-MAX PELLET 14 Fired with Wood Pellets. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiZ57rGmM3gAhVmpYsKHR0hA_wQFjAAegQIAhAC&url=https%3A%2F%2Fpowietrze.malopolska.pl%2Fwp-content%2Fuploads%2F2018%2F12%2FSprawozdanie-BIO-MAX-PELLET-14kW-Pellet-drzewny-.pdf&usg=AOvVaw35t_x_4oYktMpMhr-sZViM (accessed on 22 February 2019).
- Chaoyang, Z.; Yongqiang, W.; Qiye, J.; Qijuan, C.; Yuegui, Z. Mechanism analysis on the pulverized coal combustion flame stability NOx emission in a swirl burner with deep air staging. J. Energy Inst. 2019, 92, 298–310. [Google Scholar]
- Kasztelewicz, Z.; Tajduś, A.; Cała, M.; Ptak, M.; Sikora, M. Strategic conditions for the future of brown coal mining in Poland. Energy Policy J. 2018, 21, 155–178. [Google Scholar]
- Gilewska, M.; Otremba, K. The some aspects of agricultural reclamation the post-mining grounds of the Konin and Adamów Brown Coal Mines. Ecol. Eng. 2018, 19, 22–29. [Google Scholar]
- Characteristics, Types and Calorific Value of Fuel and Coal. Available online: https://taniepalenie.pl/charakterystyka-rodzaje-kalorycznosc/ (accessed on 20 March 2019).
- Sieniawa Brown Coal. Available online: http://www.sieniawa.com/en/our-offer/brown-coal/ (accessed on 20 March 2019).
- InterFuel. Available online: https://www.interfuel.pl/wegiel-brunatny/7 (accessed on 20 March 2019).
- Czech Brown Coal. Available online: https://czeskiwegiel.wordpress.com/czeski-wegiel-brunatny/ (accessed on 20 March 2019).
- Igliński, B.; Buczkowski, R.; Cichosz, M. Technologie Bioenergetyczne, 1st ed.; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Polska, 2009; pp. 17–318. [Google Scholar]
- Czaja, P.; Kwaśniewski, K. Polish Coal, Energy and Environment—Chances and Dangers. Annu. Set Environ. Protect. 2016, 18, 38–60. [Google Scholar]
- Bożym, M. Fly ash from brown coal in sewage sludge management. Prace Instytutu Szkła, Ceramiki Materiałów Budowlanych 2010, 5, 104–112. [Google Scholar]
Construction Element | New Biofuel Burner | Burner for Ecological Fuels |
---|---|---|
Hopper | 100 kg | 300 kg |
Drying of the fuel | using the heat of combustion | additional fan placed at the hopper |
Fuel feeding | screw feeder driven by a motoreducer | screw feeder driven by a motoreducer |
Supply of combustion air | through openings in the combustion chamber | through right- or left-handed holes in the combustion chamber |
Preparing the combustion air | The fan placed in the upper part of the combustion chamber | The fan placed on the side of the combustion chamber |
The outlet of hot exhaust gases | in the axis of the screw feeder | when the holes are left-handed-on the left side; when the holes are clockwise-on the right |
Control of the device | control panel | control panel |
Parameter | Biofuel Burner | Burner Scanbio 1 | Burner Kipi 2 |
---|---|---|---|
Efficiency [%] | 94 | 95 | 96 |
Average power consumption [W] | 2000 | 400 | 600 |
Fuel consumption [kg/h] | 75 | 67 | 57 |
Hopper capacity [kg] | 200 kg | No integrated fuel tank—connection required with the warehouse | 1800 l |
Depth of combustion chamber [mm] | 687 | 700 | 631 |
Flue gas temperature (wood pellet) [°C] | 1100 | 220 | 450 |
Fuel | Parameter | Value |
---|---|---|
Lignite [40] | The calorific value | 14.882 [MJ/kg] |
Carbon (by mass) | 42.2% | |
Hydrogen (by mass) | 3.17% | |
Sulfur (by mass) | 1.18% | |
Oxygen (by mass) | 12.27% | |
Nitrogen (by mass) | 0.52% | |
Moisture (by mass) | 31.82% | |
Ash (by mass) | 8.84% | |
Wood pellets | The calorific value | 19.4 MJ/kg |
Moisture content | 7.8% (measurement 10%) | |
Ash content | 0.47% | |
Diameter | 6 mm | |
Straw pellets | The calorific value | 14.218 MJ/kg |
Moisture content | 9.3% (measurement 12.6%) | |
Ash content | 7.6% | |
Diameter | 6 mm | |
Sunflower seed pellets | The calorific value | 18 MJ/kg |
Moisture content | 9% (measurement 10.2%) | |
Ash content | 0.5% | |
Diameter | 6 mm |
Device | Measuring Range | Accuracy |
---|---|---|
Thermal imaging camera | −20–1500 °C | 0.1 °C |
Video Pyrometer AX 7550 | −50–1600 °C | 0.1 °C |
Measurement Point | Measurement Number | Temperature of the Lignite Combustion [°C] | Temperature of the Wood Pellet Combustion [°C] | Temperature of Straw Pellets Burning [°C] | Temperature of the Sunflower Pellet Burning [°C] |
---|---|---|---|---|---|
The air pipe for drying the fuel | I | 480 | 600 | 440 | 580 |
II | 500 | 621 | 448 | 587 | |
III | 502 | 615 | 452 | 584 | |
Fuel inlet to the combustion chamber | I | 322 | 545 | 360 | 539 |
II | 350 | 604 | 378 | 542 | |
III | 348 | 608 | 375 | 542 | |
External wall of the combustion chamber | I | 978 | 1167 | 904 | 1087 |
II | 991 | 1142 | 892 | 1111 | |
III | 1000 | 1169 | 897 | 1100 | |
100 mm distance from the screw | I | 408 | 408 | 256 | 370 |
II | 433 | 433 | 249 | 371 | |
III | 429 | 429 | 251 | 370 | |
180 mm distance from the screw | I | 760 | 760 | 694 | 854 |
II | 799 | 799 | 690 | 859 | |
III | 802 | 802 | 694 | 862 | |
Exhaust gas outlet | I | 1064 | 1209 | 1002 | 1201 |
II | 1103 | 1250 | 987 | 1215 | |
III | 1100 | 1244 | 990 | 1218 |
Exhaust Gas Component | Measurement | Requirement of the Standard |
---|---|---|
O2 | 7.7% | met |
CO2 | 9.8% | met |
CO | 68 ppm 116 mg/kWh | met |
NO | 5 ppm 14%CO2 | met |
NOx | 12 g/kWh | met |
Parameter | Value | Unit |
---|---|---|
The power of steam boiler | 232 | kW |
The power of the cooling system | 20.32 | kW |
Chemical energy of the fuel | 310 | kW |
The total power of the system | 292 | kW |
System efficiency | 94 | % |
The minimum oxygen mass demand for burning | 1.268 | kg O2/kg fuel |
Minimum oxygen molar demand for combustion | 0.03963 | kmol O2/kg fuel |
Minimum combustion air requirement | 0.1887 | kmol air/kg fuel |
Actual air demand for combustion | 0.302 | kmol air/kg fuel |
Total amount of damped moist exhaust gas | 9.6781 | kg moist exhaust gas/kg fuel (without ballast) |
Composition of moist exhaust gas: CO2 | 0.1599 | kg CO2/kg moist exhaust gas |
Composition of moist exhaust gas: SO2 | 0.0025 | kg SO2/kg moist exhaust gas |
Composition of moist exhaust gas: N2 | 0.6909 | kg N2/kg moist exhaust gas |
Composition of moist exhaust gas: O2 | 0.786 | kg O2/kg moist exhaust gas |
Composition of moist exhaust gas: H2O | 0.0681 | kg H2O/kg moist exhaust gas |
Flux of part of fuel without ash-ballast | 0.019 | kg/s |
Mass flux of moist flue gas flow | 0.18 | kg/s |
Emission CO2 | 103.63 | kg/h |
Emission SO2 | 1.62 | kg/h |
Emission N2 | 447.7 | kg/h |
Emission O2 | 50.93 | kg/h |
Emission H2O | 44.13 | kg/h |
Emission of dust | 0.0663 | kg/h |
Fuel Type | Biofuel Burner—Combustion Temperature [°C] * | Ecological Fuel Burner—Combustion Temperature [°C] ** |
---|---|---|
Brown coal | 1089.00 | 1100 |
Wood pellets | 1234.33 | 1250 |
Straw pellets | 993.00 | 1000 |
Sunflower pellets | 1211.33 | 1200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Wichłacz, J. The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner. Energies 2019, 12, 1383. https://doi.org/10.3390/en12071383
Tucki K, Orynycz O, Wasiak A, Świć A, Wichłacz J. The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner. Energies. 2019; 12(7):1383. https://doi.org/10.3390/en12071383
Chicago/Turabian StyleTucki, Karol, Olga Orynycz, Andrzej Wasiak, Antoni Świć, and Joanna Wichłacz. 2019. "The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner" Energies 12, no. 7: 1383. https://doi.org/10.3390/en12071383
APA StyleTucki, K., Orynycz, O., Wasiak, A., Świć, A., & Wichłacz, J. (2019). The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner. Energies, 12(7), 1383. https://doi.org/10.3390/en12071383