LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China
Abstract
:1. Introduction
2. LCOE Model for CSP Systems
2.1. Capital Cost of the CSP System
2.2. Cumulative Installed Capacity
2.3. Learning Rate
2.4. Land Cost
2.5. Operation and Maintenance Cost
2.6. Insurance Cost
2.7. Solar Resource
2.8. Tracking Factor
2.9. Performance Factor
2.10. Degradation Rate
2.11. Discount Rate
2.12. Lifetime of the System
3. Results and Discussion
4. Conclusions
- (1)
- It is inappropriate to build a tower CSP plant nearby Shenzhen and Shanghai. Even if the land costs drop to zero, the LCOEs would be still higher than 6 RMB kWh−1 mainly owing to the relatively low DNI of less than 800 kWh m−2 year−1. The impact of DNI on the LCOE is much more significant than the other influence factors.
- (2)
- There is an optimal capacity of TES resulting in the lowest LCOE for a certain tower CSP plant, as the performance factor increases with the increasing TES capacity and then becomes stable. The solar salt has the lowest LCOE among those four molten-salts regardless of the TES capacity.
- (3)
- The LCOE of tower CSP would reach the grid parity in the years of 2038–2041 in the case of no future penalties for the CO2 emissions based on the four scenarios for CSP development roadmap proposed by IEA. As such, the grid parity would be brought forward about 7–8 years for the carbon emission price of 162.5 RMB ton−1 CO2 and about 13–14 years for the carbon emission price of 325 RMB ton−1 CO2.
- (4)
- The LCOE of the tower CSP systems is significantly affected by the learning rate and discount rate, yet it is less sensitive to the lifetime. Moreover, the impact of operation-maintenance cost is greater than that of insurance cost and degradation rate.
Author Contributions
Funding
Conflicts of Interest
References
- Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C.; Kruizenga, A. Concentrating Solar Power Gen3 Demonstration Roadmap; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2017.
- CSPPLAZA. Global CSP Installed Capacity Increased to 5133 MW by the End of 2017 (Beijing, China). 2018. Available online: http://www.cspplaza.com/article-11387-1.html (accessed on 24 January 2018).
- Zhao, Z.; Li, Z.; Xia, B. The impact of the CDM (clean development mechanism) on the cost price of wind power electricity: A China study. Energy 2014, 69, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Frisari, G.; Stadelmann, M. De-risking concentrated solar power in emerging markets: The role of policies and international finance institutions. Energy Policy 2015, 82, 12–22. [Google Scholar] [CrossRef]
- Hernández-Moro, J.; Martínez-Duart, J. CSP electricity cost evolution and grid parities based on the IEA roadmaps. Energy Policy 2012, 41, 184–192. [Google Scholar] [CrossRef]
- Hernández-Moro, J.; Martínez-Duart, J. Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renew. Sustain. Energy Rev. 2013, 20, 119–132. [Google Scholar] [CrossRef]
- Parrado, C.; Marzo, A.; Fuentealba, E.; Fernández, A. 2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants. Renew. Sustain. Energy Rev. 2016, 57, 505–514. [Google Scholar] [CrossRef]
- Hinkley, J.; Hayward, J.; Curtin, B.; Wonhas, A.; Boyd, R.; Grima, C.; Tadros, A.; Hall, R.; Naicker, K. An analysis of the costs and opportunities for concentrating solar power in Australia. Renew. Energy 2013, 57, 653–661. [Google Scholar] [CrossRef]
- Dieckmann, S.; Dersch, J.; Giuliano, S.; Puppe, M.; Lüpfert, E.; Hennecke, K.; Pitz-Paal, R.; Taylor, M.; Ralon, P. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025. AIP Conf. Proc. 2017, 1850, 160004. [Google Scholar]
- Simsek, Y.; Mata-Torres, C.; Guzmán, A.M.; Cardemil, J.M.; Escobar, R. Sensitivity and effectiveness analysis of incentives for concentrated solar power projects in Chile. Renew. Energy 2018, 129, 214–224. [Google Scholar] [CrossRef]
- Du, F.; Xie, H. Economics analysis of solar thermal power and recommendations on industry-based incentive policies (in Chinese). Adv. New Renew. Energy 2013, 1, 197–207. [Google Scholar]
- Si, J. Technical and economic route of concentrating solar power generation in China. China Power Enterp. Manag. 2015, 15, 54–57. (In Chinese) [Google Scholar]
- Zhao, Z.; Chen, Y.; Thomson, J. Levelized cost of energy modeling for concentrated solar power projects: A China study. Energy 2017, 120, 117–127. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, D.; Mischke, P.; Zhang, X. Electricity generation costs of concentrated solar power technologies in China based on operational plants. Energy 2015, 89, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liao, S.; Rao, Z.; Liu, G. A dynamic assessment based feasibility study of concentrating solar power in China. Renew. Energy 2014, 69, 34–42. [Google Scholar] [CrossRef]
- Wu, W.; Huang, J.; Liu, X. Analysis on the optimal solar multiples and full load hours of heat storage for trough high temperature molten salt concentated solar power (CSP) plant. In Proceedings of the 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017), Zhuhai, China, 29–30 June 2017. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, X.; Guo, W. Cost-benefit analysis for the concentrated solar power in China. J. Electr. Comput. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, X.; Zhang, Y.; Li, Y. The economic performance of concentrated solar power industry in China. J. Clean. Prod. 2018, 205, 799–813. [Google Scholar]
- Azoumah, Y.; Ramdé, E.; Tapsoba, G.; Thiam, S. Siting guidelines for concentrating solar power plants in the Sahel: Case study of Burkina Faso. Sol. Energy 2010, 84, 1545–1553. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Energy Technology Perspectives 2008: Scenarios and Strategies to 2050; International Energy Agency, IEA/OECD: Paris, France, 2008; pp. 1–650. [Google Scholar]
- Richter, C.; Teske, S.; Short, R. Concentrating Solar Power Global Outlook 09; Greenpeace International: Amsterdam, The Netherlands; European Solar Thermal Electricity Association (ESTELA): Brussels, Belgium; IEA SolarPACES: Tabernas, Spain, 2009. [Google Scholar]
- International Energy Agency (IEA). Technology Roadmap-Concentrating Solar Power; International Energy Agency, IEA/OECD: Paris, France, 2010; pp. 1–52. [Google Scholar]
- National Renewable Energy Laboratory (NREL). System Advisor Model (SAM). Available online: https://sam.nrel.gov/ (accessed on 5 September 2017).
- National Renewable Energy Laboratory (NREL). Simple Levelized Cost of Energy (LCOE) Calculator Documentation. Available online: https://www.nrel.gov/analysis/tech-lcoe-documentation.html (accessed on 1 April 2019).
- Grübler, A.; Nakićenović, N.; Victor, D. Dynamics of energy technologies and global change. Energy Policy 1999, 27, 247–280. [Google Scholar] [CrossRef] [Green Version]
- Nemet, G. Beyond the learning curve: Factors influencing cost reductions in photovoltaics. Energy Policy 2006, 34, 3218–3232. [Google Scholar] [CrossRef]
- Carpenter, S.; Kemp, S.; Robillard, P. Cost Reduction Study for Solar Thermal Power Plants; Enermodal Engineering Limited: Kitchener, ON, Canada; Marbek Resource Consultants Ltd.: Ottawa, ON, Canada, 1999. [Google Scholar]
- Laitner, J. LBD technology data. Spreadsheet; US Environmental Protection Agency: Washington, DC, USA, 2002.
- Papineau, M. An economic perspective on experience curves and dynamic economies in renewable energy technologies. Energy Policy 2006, 34, 422–432. [Google Scholar] [CrossRef]
- Winkler, H.; Hughes, A.; Haw, M. Technology learning for renewable energy: Implications for South Africa’s long-term mitigation scenarios. Energy Policy 2009, 37, 4987–4996. [Google Scholar] [CrossRef]
- United States Department of Energy (DOE). Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation. 2017. Available online: http://www.eere.energy.gov/solar/pdfs/csp_water_study.pdf (accessed on 24 January 2018).
- Malagueta, D.; Szklo, A.; Borba, B.; Soria, R.; Aragãoa, R.; Schaeffer, R.; Dutra, R. Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system. Energy Policy 2013, 59, 198–212. [Google Scholar] [CrossRef]
- Purohit, I.; Purohit, P. Techno-economic evaluation of concentrating solar power generation in India. Energy Policy 2010, 38, 3015–3029. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Energy Technology Perspectives 2010: Scenarios and Strategies to 2050; International Energy Agency, IEA/OECD: Paris, France, 2010; pp. 1–706. [Google Scholar]
- Viebahn, P.; Lechon, Y.; Trieb, F. The potential role of concentrated solar power (CSP) in Africa and Europe-A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 2011, 39, 4420–4430. [Google Scholar] [CrossRef]
- PVCDRM. Available online: http://www.pveducation.org/pvcdrom/properties-of-sunlight/air-mass (accessed on 29 September 2017).
- Kasten, F.; Young, A. Revised optical air mass tables and approximation formula. Appl. Opt. 1989, 28, 4735–4738. [Google Scholar] [CrossRef]
- Woolf, H. On the Computation of Solar Elevation Angles and the Determination of Sunrise and Sunset Times; National Meteorological Center: Suitland, MD, USA, 1968.
- Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology. Sol. Energy 2010, 84, 1696–1705. [Google Scholar] [CrossRef]
- Caldés, N.; Varela, M.; Santamaría, M.; Sáez, R. Economic impact of solar thermal electricity deployment in Spain. Energy Policy 2009, 37, 1628–1636. [Google Scholar] [CrossRef]
- Office of Energy Efficiency and Renewable Energy, Department of Energy. Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities; DE-FOA-0001186; 2014. Available online: https://www.energy.gov/eere/solar/concentrating-solar-power-advanced-projects-offering-low-lcoe-opportunities-csp-apollo (accessed on 24 January 2018).
- Salanne, M.; Simon, C.; Turq, P.; Madden, P. Heat-transport properties of molten fluorides: Determination from first-principles. J. Fluorine Chem. 2009, 130, 38–44. [Google Scholar] [CrossRef]
- An, X.; Cheng, J.; Yin, H.; Xie, L.; Zhang, P. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique. Int. J. Heat Mass Trans. 2015, 90, 872–877. [Google Scholar] [CrossRef]
- Khokhlov, V.; Korzun, I.; Dokutovich, V.; Filatov, E. Heat capacity and thermal conductivity of molten ternary lithium, sodium, potassium, and zirconium fluorides mixtures. J. Nucl. Mater. 2011, 410, 32–38. [Google Scholar] [CrossRef]
- Liu, T.; Liu, W.; Xu, X. Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 93, p. 012023. [Google Scholar]
- Zavoico, A. Solar Power Tower Design Basis Document, Revision 0; Office of Scientific & Technical Information Technical Reports; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, July 2001. [CrossRef]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A. Heat transfer fluids for concentrating solar power systems–a review. Appl. Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Poullikkas, A.; Hadjipaschalis, I.; Kourtis, G. The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems. Renew. Sustain. Energy Rev. 2010, 14, 1469–1476. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Mishra, S.; Banerjee, R. An analysis of costs of parabolic trough technology in India. Energy Policy 2012, 48, 407–419. [Google Scholar] [CrossRef]
- Staley, B.; Goodward, J.; Rigdon, C.; MacBride, A. Juice from Concentrate: Reducing Emissions with Concentrating Solar Thermal Power; World Resources Institute: Washington, DC, USA, 2009; Available online: http://pdf.wri.org/juice_from_concentrate.pdf (accessed on 24 January 2018).
- Price Water House Coopers (PwC). 100% Renewable Electricity: A Roadmap to 2050 for Europe and North Africa. 2010. Available online: http://www.pwc.com/sustainability (accessed on 24 January 2018).
- Pacca, S.; Sivaraman, D.; Keoleian, G. Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy 2007, 35, 3316–3326. [Google Scholar] [CrossRef]
- Bhawan, S.; Puram, R. CO2 Baseline Database for the Indian Power Sector. Version 6.0; Central Electricity Authority, Ministry of Power, Government on India, 2014. Available online: http://www.cea.nic.in/reports/planning/cdm_co2/user_guide_ver6.pdf (accessed on 24 January 2018).
- International Renewable Energy Agency (IRENA). Renewable Energy Technologies: Cost Analysis Series. Volume 1, Power Sector, Issue 2/5, Concentrating Solar Power. 2012. Available online: http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-CSP.pdf (accessed on 24 January 2018).
- Mathur, A.; Agrawal, G.; Chandel, M. Techno-economic analysis of solar parabolic trough type energy system for garment zone of Jaipur city. Renew. Sustain. Energy Rev. 2013, 17, 104–109. [Google Scholar] [CrossRef]
Symbol | Description | Value | Units |
---|---|---|---|
LCOEt | Levelized cost of electricity of a tower CSP system installed in the year t between 2017 and 2050 | Calculated by Equation (1) | RMB kWh−1 |
Ct | Capital cost of the system installed in the year t between 2017 and 2050 | Calculated by Equation (2) | RMB W−1 |
L | Land cost | In Table 3 | RMB W−1 |
V | Operation-maintenance cost | 2 | % |
I | Insurance cost | 0.5 | % |
S | DNI | Calculated by Equation (7) | kWh m−2 year−1 |
TF | Tracking factor | 100 | % |
η | Performance factor | Calculated by Equation (8) | m2 W−1 |
DR | Degradation rate | 0.2 | % |
r | Discount rate | 10 | % |
N | Lifetime of the system | 30 | years |
Scenario | Blue Map | Global Outlook Advanced | Global Outlook Moderate | Roadmap | |
---|---|---|---|---|---|
Objectives (GW) | 2010 | 0.82 | 0.82 | 0.82 | 0.82 |
2020 | 20 | 84 | 69 | 148 | |
2030 | 250 | 342 | 231 | 337 | |
2050 | 630 | 1524 | 831 | 1089 | |
Parameters | R = 0.32; M = 630 | k1 = 0.0059; k2 = 0.6972; k3 = 0.7565 | k1 = −0.0002; k2 = 0.4759; k3 = 2.0815 | k1 = 0.0104; k2 = −0.1016; k3 = 14.6982 |
Location | Land Area (m2 W−1) | Land Price (RMB m−2) | Land Cost (RMB W−1) |
---|---|---|---|
Huizhou | 0.0546 | 335 | 18.3 |
Taicang | 0.0554 | 252 | 13.97 |
Yanqing | 0.0573 | 70.8 | 4.05 |
Linxi | 0.0566 | 84 | 4.75 |
Delingha | 0.0513 | 25.5 | 1.31 |
Location | Huizhou | Taicang | Yanqing | Linxi | Delingha |
---|---|---|---|---|---|
S (kWh m−2 year−1) | 795.7 | 762.9 | 1189.9 | 1668.1 | 2080.5 |
Location | System Cost (RMB W−1) | Land Cost (RMB W−1) | LCOE2017 (RMB kWh−1) | Capacity Factor (%) |
---|---|---|---|---|
Huizhou | 31.48 | 18.3 | 9.28 | 7.6 |
Taicang | 31.45 | 13.97 | 8.49 | 7.7 |
Yanqing | 31.38 | 4.05 | 3.5 | 15.1 |
Linxi | 31.24 | 4.75 | 2.33 | 23 |
Delingha | 30.6 | 1.31 | 1.45 | 33.3 |
Molten-Salt | NaNO3-KNO3 | LiF-NaF-KF | Li2CO3-Na2CO3-K2CO3 | NaCl-KCl-ZnCl2 |
---|---|---|---|---|
Composition by wt.% | 60-40 | 29.3-11.7-59.0 | 32.1-33.4-34.5 | 8.1-31.3-60.6 |
Melting point (°C) | 220 | 454 | 400 | 229 |
Thermal stability (°C) | 600 | 850 | 715 | 850 |
Density (kg m−3) | 1708.4-1950.1 | 1851.6-2116.5 | 1959.7-2069.4 | 1946.2-2275.5 |
Heat capacity (kJ kg−1 K−1) | 1.48-1.55 | 1.28-1.82 | 1.61 | 0.9-0.92 |
Viscosity (mPa s) | 0.99-5.78 | 1.64-12.38 | 6.11-45.09 | 3.48-29.63 |
Thermal conductivity (W m−1 K−1) | 0.33-0.40 | 0.05-0.27 | 0.45-0.49 | 0.30-0.38 |
Salt price (RMB kg−1) | 5.80 | 16.66 | 15.02 | 4.68 |
TES cost (RMB kWht−1) | 156.00 | 316.79 | 490.15 | 111.69 |
Scenario | Time When LCOE Equals to the Grid Parity | ||
---|---|---|---|
0 RMB ton−1 CO2 | 162.5 RMB ton−1 CO2 | 325 RMB ton−1 CO2 | |
Blue map | 2040 | 2032 | 2028 |
Global outlook advanced | 2038 | 2031 | 2025 |
Global outlook moderate | 2041 | 2033 | 2027 |
Roadmap | 2040 | 2031 | 2024 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, X.; Xu, X.; Liu, W.; Xu, W. LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. Energies 2019, 12, 1394. https://doi.org/10.3390/en12071394
Zhuang X, Xu X, Liu W, Xu W. LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. Energies. 2019; 12(7):1394. https://doi.org/10.3390/en12071394
Chicago/Turabian StyleZhuang, Xiaoru, Xinhai Xu, Wenrui Liu, and Wenfu Xu. 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China" Energies 12, no. 7: 1394. https://doi.org/10.3390/en12071394
APA StyleZhuang, X., Xu, X., Liu, W., & Xu, W. (2019). LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. Energies, 12(7), 1394. https://doi.org/10.3390/en12071394