1. Introduction
The integration of utilities being vertical, the task of separating the cost incurred in generation, transmission and distribution is quite difficult. Thus, the utilities put an average tariff on to their customer which relies on the aggregated fixed price for a specific period. Some of the external agencies fix the price which focuses more on consideration rather than economics. Occurrence of Congestion at a location in power transmission system will not be able to suit all the proposed bi/multilateral exchanges. It is due to the inability to incorporate the Existing Transmission Commitments (ETC), due to the infringement of operating constraints. A glimpse of a detailed survey related to managing the congestion issues occurring worldwide has been schemed in [
1]. The authors have explained the techniques for consolidating deregulated market arrangements for the better utilizations of the power resources thereby providing solution to the issues [
2]. A model with the inclusion of system stability criterion has been accounted for so as to relieve congestion [
3]. A methodology for the embodiment of the reactive power services and real power loss while overseeing congestion has been considered [
4]. The authors have examined the effects of FACTS arrangement for pacifying this problem [
5]. The impact of congestion on the power system, and the financial signs of dispensing the associated cost venture have been discussed in [
6]. The authors have proposed congestion management based zones/cluster; wherein the zones are being decided by the congestion distribution factors [
7,
8]. A combination of pool and bilateral trading has been considered for managing the congestion in a market based environment [
9]. The author has assessed a detailed review on managing the congestion in different scenario of the market under privatization structure [
10,
11]. This paper ranks the management of congestion activities and its trappings on socio-economic impacts has been addressed in a divergent private mob. An analytical model based optimal technology comprising elements such as transformer taps and optimal switching has been incorporated for eliminating congestion [
12]. A secure path of managing congestion with the due consideration of stability has been urged in [
13,
14]. Here the optimization problem has been effectively handled incorporated with penalty constraints [
15,
16].
Managing the congestion can be eased with different algorithm such as Simulated Annealing (SA), Random Search Method (RSM) and Particle Swarm Optimization (PSO) and tested on modified IEEE 30 bus system and IEEE 57 bus system. Further this issue has been dealt with the embodiment of nonconventional wind energy system [
17]. This paper addresses the combined operation of energy utilization from hydro and wind is utilized for devising the mathematical model for bidding in a day-ahead energy market [
18]. Adjusting the real power output of generators in order to meet the power demand is a real time challenge in the present scenario in the power grid. PHSU has commercially proven to meet the changes in power demand owing to its capability to start/stop quickly in accordance to change in load. The authors have presented the erection and devising of PHSU to serve peak demand. Further an insight analysis has been carried out on electricity pricing and its associated guidelines adopted [
19]. This paper renders a wide vision into the recent development of PHSU in relation to its participation in deregulated energy market [
20]. Further it addresses the flexibility of PHSU aiding in shift of generation thereby avoiding congestion and manages reliable supply of power in the grid. A formative structure has been incorporated with combined operation of hydro and PHSU for apprehending the volatility in pricing for in order to improvise the payoff from the generators [
21]. Implementation of PSHU along with thermal plants enabled a steady decrease in emission [
22,
23]. This paper interprets the saving in cost yielded by optimal use of PHSU when operated during peak demand and thermal usage during off-peak demand [
24]. The superiority of PHSU elevated the efficiency in energy transaction [
25,
26,
27]. FPA and its variants have been developed in recent years which are found to yield better efficient outputs in applications for optimization designing due to its single probability switching parameter [
28]. It associates the non-linearity Levy flight mechanism which proves to be effectively suited for multi-objective for enhancing the algorithmic performance of exploring the distant pollinator thereby globally exploring and locally exploiting by the consistency of flowers chosen [
29,
30]. FPA has been tested on IEEE 30 bus system with three different objective functions incorporating economic load dispatch and result obtained is compared with other optimization techniques proving for its robustness over other existing algorithms [
31]. Symbiotic Organisms Search algorithm [
32], Ant lion algorithm [
33], Gravitational Search Algorithm [
34], Teaching Learning Based Optimization (TLBO) [
35] are few of the latest algorithms have been found proposed for extenuating congestion. Switching the transmission lines in optimal sequence is one of the novel technologies to subdue congestion [
36]. A novel distribution Algorithm has been proposed using nash equilibrium for effective cost reduction due to wheeling [
37]. The technological advancements employing Power Electronic circuitry for Hydro Energy Electric Systems contributes widely in terms of economical payment and space reduction [
38]. The reliability of the PHSU is effectively eased with the incorporation of Doubly-Fed Induction Motor [
39]. The future prospects of adventing compressed air storage embedded with PHSU has been discussed. This could increase the performance utilization of energy. This proves to be a viable solution for the power industry in the future [
40].
The major contributions of the paper are as follows. The main idea is to propose a methodology for managing the problem of congestion with cost reduction by rescheduling the generators active power. To achieve this task, FPA Algorithm is presented here. The stimulus of the present effort is to benefit the ISO in reliving the congestion. Here, modified IEEE 30 bus system is used as the test case. Initially an outage is created to cause the Congestion which results in power flow violation in certain transmission lines and the Congestion cost has been computed. Then the novel FPA is schemed as an efficient optimizing tool for rescheduling cost minimization as well as reduces the system losses. Further the rescheduling Congestion cost is compared with and without the application of FPA is computed. The effectiveness of the proposed Algorithm is proven in terms of minimized Congestion cost. To validate its effectiveness, the obtained results are compared with other optimization algorithms already reported in literature. Thereafter to replenish the varying load demand nature, a PHSU unit has been incorporated in it. The efficacy of FPA algorithm incorporating with PHSU is then investigated in terms of congestion cost minimization.
The paper is methodized as follows:
Section 2 deals with the frame work criterion of managing congestion by rescheduling of generator’s active power with the inclusion of PHSU in terms of congestion cost and loss minimization.
Section 3 accomplishesFPA as an efficient optimizing tool for congestion cost minimization as well as reduces the system losses.
Section 4 discusses the power flow violation due to congestion and the application of suitable methodology namely FPA. The efficacy of FPA in benefitting the Independent System Operator (ISO) in reliving the congestion is presented here. Here, modified IEEE 30 bus system is used as the test case. There after it is validated with other optimization techniques.
Section 5 presents the significance of PHSU incorporated in the test system in aiding further reduction in congestion cost, losses and voltage profile improvement embodying BSF and GSF. Furthermore an economic analysis of congestion cost reduction using FPA before and after the incorporation of PHSU is investigated.
3. Flower Pollination Technique
Flower pollination is a process adopted by flowers and plants to reproduce. It is classified into biotic and abiotic. Biotic pollination is done by living organisms whereas nonliving accounts for abiotic pollination. The other way of classifying pollination is self and cross. Self-pollination means fertilization of the same plant and cross-fertilization happens for different plants. The long distance process is called global pollination, and implantation, happening over short distance, is called local pollination. Flower constancy also provides an assurance of nectar for the pollinators with minimum effort of learning, exploration and exploitation. The global pollination is carried out by the equation
where,
ith pollen at mth iteration
—Levy weight-based size of each step (s; s > 0).
—Best current solution at current iteration.
Gamma distribution function
The pollination occurring locally is carried out by the following equation
ith pollen at mth iterations
—takes a value of [0,1]
and —pollen from different flowers from same plant.
Biotic, also called cross-pollinators, follows movement of step flight, which aids in attaining. A set of N flower population is generated with random solutions. Global pollination follows the rule of biotic and cross-pollination; the reproduction probability depends on flower constancy.
The two indispensable concepts of FPA are local and global pollination steps. Pollinators carry the pollens of the flower to far reaching places due to its custom manner. This helps in the exploration of the larger search space. Here the general tuning parameter of levy flight mechanism, which essentially incorporates the various distant step sizes carried out by the pollinator. Usually the nearby flower is pollinated by the pollens of the local adjacent flowers rather than the far-off flowers. Thus, the general probability tuning parameter using levy fight mechanism switches effectively between global pollination and local pollination ensures the effective exploration and exploitation of the learning with minimum learning effect.
A simple numerical example is illustrated here for the implementation of FPA, as given below.
Consider a simple objective function subject to = (0.3,0.3). The fitness value obtained is . Equation (26) is then applied and and then updated to (0.1,1) for illustration. Then the newly updated. . As a result, the new fitness value solution . Here . This infers that the old fitness value solution can be replaced by the currently obtained fitness value. For example, if the newly updated. , this results in the new fitness solution . Here . This clearly indicates there is no progress to advance . Thus, this value should be discarded and proceeded for the updating the next fitness value as indicated in pseudocode.
5. Results and Discussions
The proposed method is schemed considering IEEE modified 30-bus system, which consists of six generator buses and 24 load buses. The slack node has been assigned as bus number 1. The numbering of buses has been done in a way that the generator buses are numbered first followed by load bus.
Figure 4 depicts the single line diagram of the modified IEEE 30-bus system considered here.
Contingency analysis was conducted under the base load condition to identify the harmful contingencies. Here the outage of line 1–2 with normal loading is considered and has been illustrated out in
Figure 5. It is ascertained from
Figure 5. The actual power flow violation rises to 1.14%, 2.13%, and 1% in the lines connected between 1 and 3, 2 and 6, and 4 and 6, respectively. The system has been simulated with a line outage so as to create the contingency and results of line flow and its violations are reported in
Table 1. Here, from
Table 1 we can observe that there are three lines those are violating their limit that is line number 1, 5, and 6 which have 130 MW, 65 MW, and 90 MW of line flow limit, respectively. The power flows on the three violated lines are nearly 148 MW, 138 MW, and 90 MW. Even though the line 6 is violating by a small amount that is nearly equal to 0.59 MW, it has also been taken into consideration in the calculation. Congestion due to outage of line 1–2 and its effect on network framework parameters has been tabulated in
Table 2. Here, due to congestion the percentage of overload on the congested line is reflected. The most overloaded line among the three lines that has to get congestion due to the line outage of lines 1–2 is the line connecting between buses 2 and 6.
The amount of power violated by each of the congested line is also shown in
Figure 6. The line 2–6 has violated the limits the most that is nearly 73 MVA of power. The total amount of power violated due to the outage is 92.292 MVA. This power violation has to be now rescheduled through other lines so as to get rid of the congestion that has appeared. It is highlighted from
Figure 7 the increase in overload amounts to 13.89%, 113.29%, and 0.65% in the lines connected between 1–3, 2–6, and 4–6, respectively. This violation is one of the issues critically faced by ISO. To achieve this task, the novel FPA is schemed as an efficient optimizing tool for congestion cost minimization as well as reduces the system losses. The stimulus of the present effort is to benefit the ISO in reliving the congestion. The rescheduling line flow is compared with and without the application of FPA is computed. The Flower Pollination Algorithm is used here as an optimization tool and it can be seen that the result obtained in
Table 3 reflects its validity. The line which were violating the their line flow limits are now under the limits of their flow after the rescheduling of the generators is done by utilizing the FPA as shown in
Figure 8.
Table 4 indicates the economic cost analysis of cost before rescheduling is 941.208
$/hr, while after rescheduling it reduces to 460.616
$/hr. Here the expedition between the global and local search using levy flight mechanism ensures the optimal output. This validates the effectiveness of the algorithm. Further the changes in active power rescheduling have been graphically depicted in
Figure 9.
The results gained from the implementation of FPA for alleviation of congestion are tabulated in
Table 5. With the results obtained in [
16], the effectiveness of the proposed algorithm is illustrated with the reduction in congestion cost of 1.60%, 1.55%, 1.17%, and 1.07% as compared with other optimization algorithms like Simulated Annealing (SA), Random Search Method (RSM), Particle Swarm Optimization (PSO), and Teaching Learning-Based Optimization (TLBO). The best effective final solution is attained due to the legitimate control of the algorithmic based specific tuning criterion.
Figure 10 infers that Flower Pollination Algorithm (FPA) yields the minimum congestion of 460.616
$/hr as compared with the results obtained with other optimization techniques.
Figure 11 validates the effectiveness of the algorithm in terms of its convergence in seven iterations as compared with 25 iterations in SA and RM, while 50 iterations are required in PSO to obtain solution consistency.
Table 6 provides the parametric settings of the proposed FPA with other optimization techniques.
6. Congestion Management with PHSU
In this proposed work, to replenish the varying load demand nature, a PHSU unit has been incorporated with the test system. PHSU is operated in generator mode when there is power inadequacy while operated in pumping mode where there is power sufficiency. Thus PHSU helps in minimize the cost of congestion while maintaining the voltage figuration, The test case considering the modified IEEE 30 bus system has been simulated with a line outage 1–2 so as to create the contingency and results in violations of power flow between lines 1–3, 2–6, and 4–6, respectively. Considering this outage, BSF are then computed for different load buses. The bus with the highest negative index is chosen to be the optimal location for PHSU placement. Here, it is evident from
Table 7 that the ideal location for PHSU placement is obtained at bus 4. This is pictorially depicted in
Figure 12 The feasible location of PSHU placement is attained assuming sufficient availability of water resource and reservoir area. GSF is then calculated for rescheduling active power of generators. Thus the placement of PHSU at bus 4 yields the minimized congestion cost of 361.450
$/hr as compared to bus 16 with 756.03
$/hr higher cost of congestion. This infers the efficiency of FPA in terms of congestion cost reduction. Active powers of the generators are then rescheduled through the computed GSF as inferred from
Table 8 Generators with the highest negative sensitivities are opted for participation in rescheduling
Table 9.
Figure 12 interprets the incremental changes in value of rescheduling of real powers of the generators with the incorporation of PSHU. This facilitates meeting the objective of yielding minimum cost of congestion. The results gained from the implementation of FPA for alleviation of congestion influencing other network criterion is tabulated in
Table 10. This investigates the effective minimization of power losses and security enhancement after employing EPA. The total loss in the system was 8.177 MW, which was also reduced to 5.217 MW after conducting congestion management, and further reduced to 4.208 MW after the incorporation of PHSU. Further the considerable improvement in voltage portrait is also tabulated.
The PHSU is placed at load bus number 4 which is selected based on the most sensitive bus sensitivity factor. The PHSU is connected to the bus 16 and the results are tabulated. The generation cost is 736.426
$/hr and the congestion cost incurred to the consumer is 361.450
$/hr after the implementation of the pumped storage hydro unit at bus 4, as pictorially depicted in
Figure 13.
Table 11 infers the alleviation of congestion after the incorporation of PHSU employing FPA.
From
Table 12, it is inferred that the rescheduling cost using FPA is considerable reduced by 1.27% with the PHSU placement. Furthermore, the superiority of the FPA is shown in terms of congestion cost reduction of 2.04% after the application of FPA algorithm employing PHSU placement as depicted pictorially in
Figure 14. Thus the effectiveness of the FPA algorithm is proven in terms of minimized congestion cost and other parameters that influence the network framework criterion.