Asymmetrical Three-Level Inverter SiC-Based Topology for High Performance Shunt Active Power Filter
Abstract
:1. Introduction
2. Shunt Active Power Filter-Based on Voltage Detection (VSAPF)
2.1. VSAPF Fundamental Principles
2.2. VSAPF Control System
3. Asymmetrical Three Level Converter Topology (3L-ASYM)
3.1. Switching States
3.2. 3L ASYM—Voltage Level Generation and Output Current
3.2.1. 3L ASYM Commutation p-0 for Positive Current
3.2.2. 3L ASYM Commutation p-0 for Negative Current
3.2.3. 3L ASYM Commutation n-0 for Positive Current
3.2.4. 3L ASYM Commutation n-0 for Negative Current
4. Comparative Evaluation
4.1. Simulation Results
4.2. Efficiency Comparison
4.3. Efficiency Performance Discussion
4.3.1. Ripple Filter Losses
4.3.2. Coupling Inductor Losses
4.3.3. VSC Switching Losses
4.3.4. VSC Conduction Losses
4.3.5. Total Losses
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SiC | Silicon Carbide |
RES | Renewable energies system |
DG | Distributed generation |
PV | Solar photovoltaic array |
ASD | Adjustable speed drives |
UPS | Uninterruptible power supplies |
SAPF | Shunt active power filter |
VSC | Voltage source converters |
EMI | Electromagnetic interference |
WBG | Wide band gap |
2L | Two-level converter |
3L-TNPC | Three-level neutral-point-piloted or T-Type converter |
3L-ASYM | Three-level asymmetrical converter |
3L-NPC | Three-level neutral-point-clamped |
PCC | Point of Common Coupling |
THD | Total Harmonic Distortion |
VSAPF | Shunt Active Power Filter based on Voltage Detection |
SBD | Schottky Barrier Diodes |
ZVS | Zero Voltage Switching |
HB | Half-bridge |
References
- Guzman Iturra, R.; Thiemann, P. A Simple SiC MOSFETs Three Level Inverter Topology for High Performance Shunt Active Power Filter. In Proceedings of the 2019 21th European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 2–6 September 2019. [Google Scholar]
- Buccella, C.; Cecati, C.; Abu-Rub, H. An Overview on Distributed Generation and Smart Grid Concepts and Technologies. In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications; Abu-Rub, H., Malinowski, M., Al-Haddad, K., Eds.; John Wiley & Sons: Chichester, UK, 2014; pp. 50–55. ISBN 978-1-118-63403-5. [Google Scholar]
- Samad, T.; Koch, E.; Stluka, P. Automated Demand Response for Smart Buildings and Microgrids: The State of the Practice and Research Challenges. IEEE Trans. Power Electron. 2017, 32, 2808–2821. [Google Scholar] [CrossRef]
- Subbiah, R.; Pal, A.; Nordberg, E.K.; Marathe, A.; Marathe, M.V. Energy Demand Model for Residential Sector: A First Principles Approach. IEEE Trans. Sustain. Energy 2017, 8, 1215–1224. [Google Scholar] [CrossRef]
- Franquelo, L.G.; Leon, J.I.; Vazquez, S. Challenges of the Current energy Scenario: The Power Electronics Contributions. In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications; Abu-Rub, H., Malinowski, M., Al-Haddad, K., Eds.; John Wiley & Sons: Chichester, UK, 2014; pp. 27–40. ISBN 978-1-118-63403-5. [Google Scholar]
- Alizadeh, M.I.; Moghaddam, M.P.; Amjady, N.; Siano, P.; Sheikh-El-Eslami, M.K. Flexibility in future power systems with high renewable penetration: A review. Renew. Sustain. Energy Rev. 2016, 57, 1186–1193. [Google Scholar] [CrossRef]
- Du, E.; Zhang, N.; Hodge, S.; Wang, Q.; Kang, C.; Kroposki, B.; Xia, Q. The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. IEEE Trans. Power Syst. 2018, 33, 6630–6641. [Google Scholar] [CrossRef]
- Liang, X. Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Trans. Ind. Appl. 2017, 53, 855–866. [Google Scholar] [CrossRef]
- Liang, X.; Andalib-Bin-Karim, C. Harmonics and Mitigation Techniques Through Advanced Control in Grid-Connected Renewable Energy Sources: A Review. IEEE Trans. Ind. Appl. 2018, 54, 3100–3111. [Google Scholar] [CrossRef]
- Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Saleh, M.; Esa, Y.; Hariri, M.E.; Mohamed, A. Impact of Information and Communication Technology Limitations on Microgrid Operation. Energies 2019, 12, 2926. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Jayaweera, S.K. Machine-Learning Aided Optimal Customer Decisions for an Interactive Smart Grid. IEEE Syst. J. 2015, 9, 1529–1540. [Google Scholar] [CrossRef]
- Bose, B.K. Artificial Intelligence Techniques in Smart Grid and Renewable Energy Systems—Some Example Applications. Proc. IEEE 2017, 105, 2262–2273. [Google Scholar] [CrossRef]
- Vartanian, C.; Bauer, R.; Casey, L.; Loutan, C.; Narang, D.; Patel, V. Ensuring System Reliability: Distributed Energy Resources and Bulk Power System Considerations. IEEE Power Energy Mag. 2018, 16, 52–63. [Google Scholar] [CrossRef]
- Massoud, M.A.; Shehab, A.; Abdel-Khalik, A.S. Active Power Filter. In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications; Abu-Rub, H., Malinowski, M., Al-Haddad, K., Eds.; John Wiley & Sons: Chichester, UK, 2014; pp. 534–539. ISBN 978-1-118-63403-5. [Google Scholar]
- Singh, B.; Chandra, A.; Al-Haddad, K. Power Quality Problems and Mitigation Techniques, 1st ed.; John Wiley & Sons: Chichester, UK, 2014; pp. 534–539. ISBN 978-1-118-92295-7. [Google Scholar]
- Bose, B. Energy, Global Warming and Impact of Power Electronics in the Present Century. In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications; Abu-Rub, H., Malinowski, M., Al-Haddad, K., Eds.; John Wiley & Sons: Chichester, UK, 2014; pp. 20–25. ISBN 978-1-118-63403-5. [Google Scholar]
- Santoso, S.; McGranaghan, M.F.; Dugan, R.C.; Wayne Beaty, H. Electrical Power Systems Quality, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2017; pp. 149–177. ISBN 978-0-07-176155-0. [Google Scholar]
- Kolar, J.; Schrittwieser, L.; Krismer, F.; Antivachis, M.; Bortis, D. VIENNA Rectifier & Beyond. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), Santa Antonio, TX, USA, 3–8 March 2018. [Google Scholar]
- Kranzer, D.; Reiners, F.; Wilhelm, C.; Burger, B. System Improvements of Photovoltaic Inverters with SiC-Transistors. Silicon Carbide Relat. Mater. 2010, 645, 1171–1176. [Google Scholar] [CrossRef]
- Teichmann, R.; Bernet, S. A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications. IEEE Trans. Ind. Applicat. 2005, 41, 855–865. [Google Scholar] [CrossRef]
- Brückner, T. The Active NPC Converter for Medium-Voltage Drives. Ph.D. Thesis, Technischen Universität Dresden, Dresden, Germany, 15 December 2005. [Google Scholar]
- Hiller, M. Design of Multilevel Converter Systems—PCIM Tutorial 2. In Proceedings of the PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018. [Google Scholar]
- Haynes, G. Wide Band Gap (WBG) Devices, Applications and Markets—PCIM Seminar 3. In Proceedings of the PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018. [Google Scholar]
- Friedrichs, P. SiC Power devices complementing the silicon world-status and outlook. In Proceedings of the 9th International Conference on Integrated Power Electronics Systems (CIPS 2016), Nuremberg, Germany, 8–10 March 2016; pp. 1–5. [Google Scholar]
- Lin, B.; Yang, T. Novel single-phase switching mode multilevel rectifier with a high power factor. IEE Proc. Electr. Power Appl. 2005, 152, 447–454. [Google Scholar] [CrossRef]
- Viera, P.; Silva, E. A digital current control strategy for One-Cycle Control based Active Neutral Point Clamped rectifier and three derived topologies. In Proceedings of the 10th IEEE/IAS International Conference on Industry Applications (INDUSCON 2012), Fortaleza, Brasil, 5–7 November 2012; pp. 1–7. [Google Scholar]
- Lin, B.; Yang, T. Three-level voltage-source inverter for shunt active filter. IEE Proc. Electr. Power Appl. 2004, 151, 744–751. [Google Scholar] [CrossRef]
- Akagi, H.; Watanabe, E.; Aredes, M. Instantaneous Power Theory and Applications to Power Conditioning, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 149–177. ISBN 978-11-1836-210-5. [Google Scholar]
- Akagi, H. Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution system. IEEE Trans. Power Deliv. 1997, 12, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Guzman Iturra, R.; Cruse, M.; Muetze, K.; Thiemann, P.; Dresel, C. Shunt Active Power Filter for Hamonics Mitigation with Harmonics Energy Recycling Function. In Proceedings of the 18th International Conference on Power Electronics and Motion Control (PEMC 2018), Budapest, Hungary, 26–30 August 2018; pp. 938–945. [Google Scholar]
- Holmes, D.; Lipo, T.; McGrath, B.; Kong, W. Optimized design of stationary frame three phase AC current regulators. IEEE Trans. Power Electron. 2009, 24, 2417–2426. [Google Scholar] [CrossRef]
- Yazdani, A.; Reza, I. Voltage-Sourced Converters in Power Systems. Modeling, Control, and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 144–153. ISBN 978-0-470-52156-4. [Google Scholar]
- Dos Santos, E.C.; Cabral da Silva, E.R. Advanced Power Electronics Converters: PWM Converters Processing AC Voltages, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 108–1118. ISBN 978-1-118-97205-2. [Google Scholar]
- Callanan, R.; Rice, J.; Palmour, J. Third quadrant behavior of SiC MOSFETs. In Proceedings of the 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2013), Long Beach, CA, USA, 17–21 March 2013; pp. 1250–1253. [Google Scholar]
- Erickson, R.W.; Maksimović, D. Fundamentals of Power Electronics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2001; pp. 144–153. ISBN 0-7923-7270-0. [Google Scholar]
- Horff, R.; Maez, A.; Lechler, M.; Bakran, M.M. Optimised Switching of a SiC MOSFET in a VSI using the Body Diode and additional Schottky Barrier Diode. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE-ECCE Europe 2015), Geneva, Switzerland, 8–10 September 2015; pp. 1–11. [Google Scholar]
- Zhang, H.; Liu, H. Potential Applications and Impact of Most-Recent Silicon Carbide Power Electronics in Wind Turbine Systems. In Wind Energy Conversion > Technology and Trends; Muyeen, S.M., Ed.; Springer: London, UK, 2012; pp. 87–91. ISBN 978-1-4471-2200-5. [Google Scholar]
- Basler, T. Clean Switching of SiC Devices. In Proceedings of the ECPE (European Center for Power Electronics) Tutorial—Power Circuits for Clean Switching and Low Losess, Lyon, France, 17–18 October 2018. [Google Scholar]
- Rothmund, D.; Bortis, D.; Huber, J.; Biaene, D.; Kolar, J.W. 10 kV SiC-Based Bidirectional Soft-Switching Single-Phase AC/DC Converter Concept for Medium-Voltage Solid-State Transformers. In Proceedings of the 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG 2017), Florianopolis, Brasil, 17–20 April 2017; pp. 1–8. [Google Scholar]
- Hoene, E. Introduction and Motivation for WBG-Electronics. In Proceedings of the ECPE (European Center for Power Electronics) Tutorial—Wide Bandgap User Training, Graz, Austria, 26–27 February 2019. [Google Scholar]
- Wolfspeed, LTspice and PLECS Models. Available online: http://go.wolfspeed.com/all-models (accessed on 12 December 2019).
- Wong, M.C.; Ning-Yi, D.; Chi-Seng, L. Parallel Power Electronics Filters in Three-Phase Four-Wire Systems, 1st ed.; Springer Science+Business Media: Singapore, 2016; pp. 144–153. ISBN 978-981-10-1530-4. [Google Scholar]
- Schweizer, M.; Friedli, T.; Kolar, J. Comparative Evaluation of Advanced Three-Phase Three-Level Inverter/Converter Topologies Against Two-Level Systems. IEEE Trans. Ind. Elec. 2013, 60, 5515–5527. [Google Scholar] [CrossRef]
- International Electrotechnical Commission (IEC). IEC 61000-2-4. Electromagnetic Compatibility (EMC) Part 2–4: Environment—Compatibility Levels in Industrial Plants for Low-Frequency Conducted Disturbances; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2002. [Google Scholar]
- Hurley, W.; Wölfle, W. Transformers and Inductors for Power Electronics: Theory, Design and Applications, 1st ed.; John Wiley & Sons: Chichester, UK, 2013; pp. 55–69. ISBN 978-1-119-95057-8. [Google Scholar]
- Nawawi, A.; Tong, C.; Yin, S.; Sakanova, A.; Liu, Y.; Liu, Y.; Kai, M.; See, K.; Tseng, K.; Simanjorang, R.; et al. Design and Demonstration of High Power Density Inverter for Aircraft Applications. IEEE Trans. Ind. Appl. 2018, 53, 1168–1176. [Google Scholar] [CrossRef]
- Nawaz, M. Moving from Si to SiC from the End User Perspective. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), Santa Antonio, TX, USA, 4–8 March 2018. [Google Scholar]
Switching State | T1 | T2 | T3 | T4 | Output Voltage |
---|---|---|---|---|---|
p | 1 | 0 | 1 | 0 | vDC/2 |
0 | 0 | 1 | 1 | 0 | 0 |
n | 0 | 1 | 0 | 1 | –vDC/2 |
Switching State | Stress across T1/D1 | Stress across T2/D2 | Stress across T3/D3 | Stress across T4/D4 |
---|---|---|---|---|
p | - | vDC/2 | - | vDC |
0 | vDC/2 | - | - | vDC/2 |
n | vDC/2 | - | vDC/2 | - |
Topology | Component | Semiconductor | VDSMax | ID i | RsOn ii | ETot iii |
---|---|---|---|---|---|---|
Part Number | V | A | ||||
2L | T1 | C2M0025120D | 1200 | 37 | 43 | 2.4 |
T2 | C2M0025120D | 1200 | 37 | 43 | 2.4 | |
D1 | C4D30120D | 1200 | 43 | 110 | ≈0 | |
D2 | C4D30120D | 1200 | 43 | 110 | ≈0 | |
3L-TNPC | T1 | C2M0025120D | 1200 | 37 | 43 | 2.4 |
T2 | C2M0025120D | 1200 | 37 | 43 | 2.4 | |
T3 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
T4 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
D1 | C4D30120D | 1200 | 43 | 110 | ≈0 | |
D2 | C4D30120D | 1200 | 43 | 110 | ≈0 | |
D3 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D4 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
3L-ASYM | T1 | C3M0030090K | 900 | 30 | 37 | 0.66 |
T2 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
T3 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
T4 | C2M0025120D | 1200 | 37 | 43 | 2.4 | |
D1 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D2 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D3 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D4 | C4D30120D | 1200 | 43 | 110 | ≈0 | |
3L-NPC | T1 | C3M0030090K | 900 | 30 | 37 | 0.66 |
T2 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
T3 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
T4 | C3M0030090K | 900 | 30 | 37 | 0.66 | |
D1 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D2 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D3 | C3D20065D | 900 | 26 | 89.8 | ≈0 | |
D4 | C3D20065D | 900 | 26 | 89.8 | ≈0 |
Description | Value |
---|---|
Power System | 400 V (L-L), 50 Hz |
Power Transformer | 1 MVA, X/R ratio = 20, Imp. 5% |
Nonlinear Load | 265 kW (Diode Rectifier with DC capacitor) |
Capacitor Bank in the Power System | 7.5 kVAr |
Ripple filter | CF = 350 F, RF = |
DC-bus voltage/DC-Bus Cap. | = 750 V/C1 = C2 = 10 mF |
Harmonic Number | Frequency (Hz) | Amplitude (A) | Phase () |
---|---|---|---|
1 | 50 | 0.24 | −10.3 |
5 | 250 | 15.45 | 207.8 |
7 | 350 | 10.584 | −14.9 |
11 | 550 | 4.587 | −28.6 |
13 | 650 | 4.418 | 108 |
17 | 850 | 3.931 | 158.2 |
19 | 950 | 3.015 | 223 |
23 | 1150 | 3.477 | −72.1 |
25 | 1250 | 2.413 | −25 |
29 | 1450 | 2.726 | 48.1 |
31 | 1550 | 1.792 | 82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzman Iturra, R.; Thiemann, P. Asymmetrical Three-Level Inverter SiC-Based Topology for High Performance Shunt Active Power Filter. Energies 2020, 13, 141. https://doi.org/10.3390/en13010141
Guzman Iturra R, Thiemann P. Asymmetrical Three-Level Inverter SiC-Based Topology for High Performance Shunt Active Power Filter. Energies. 2020; 13(1):141. https://doi.org/10.3390/en13010141
Chicago/Turabian StyleGuzman Iturra, Rodrigo, and Peter Thiemann. 2020. "Asymmetrical Three-Level Inverter SiC-Based Topology for High Performance Shunt Active Power Filter" Energies 13, no. 1: 141. https://doi.org/10.3390/en13010141
APA StyleGuzman Iturra, R., & Thiemann, P. (2020). Asymmetrical Three-Level Inverter SiC-Based Topology for High Performance Shunt Active Power Filter. Energies, 13(1), 141. https://doi.org/10.3390/en13010141