Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study
Abstract
:1. Introduction
2. Data Selection and Management
2.1. Input Data Selection
2.2. Input Data Management
3. Deep Learning Architectures
3.1. Feed Forward Neural Network (FFNN)
3.2. Recurrent Neural Network (RNN)
3.3. LSTM vs. GRU
4. Experiment and Results
Results
5. Discussion
5.1. Comparison of Accuracy
5.2. Comparison of Performance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sare, C.B.; Paul, R.M. Peaceful coexistence: Independent microgrids are coming. In Public Utilities Fortnightly; University of Connecticut: Reston, VA, USA, 2013; Available online: https://works.bepress.com/bronin/ (accessed on 14 December 2019).
- Carpintero-Rentería, M.; Santos-Martín, D.; Guerrero, J.M. Microgrids Literature Review through a Layers Structure. Energies 2019, 12, 4381. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, E.; Ghulam, A.; Irfan, K.; Paul, M.K.; Mashood, N.; Ali, R.; Umar, F. Recent approaches of forecasting and optimal economic dispatch to overcome intermittency of wind and photovoltaic (PV) systems: A review. Energies 2019, 12, 4392. [Google Scholar]
- Sawin, J.L.; Sverrisson, F.; Rutovitz, J.; Dwyer, S.; Teske, S.; Murdock, H.E.; Adib, R.; Guerra, F.; Blanning, L.H.; Hamirwasia, V. Renewables 2018 Global Status Report; REN21: Pairs, France, 2018. [Google Scholar]
- Jeff, L.; Michael, G.; Matt, G. The Importance of Wind Forecasting—Renewable Energy Focus. Available online: http://www.renewableenergyfocus.com/view/1379/the-importance-of-wind-forecasting (accessed on 14 December 2019).
- Tim, J.; Florian, S. Forecasting the price distribution of continuous intraday electricity trading. Energies 2019, 12, 4262. [Google Scholar]
- Inman, R.H.; Pedro, H.T.C.; Coimbra, C.F.M. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013, 39, 53–576. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Nouha, M.; Abderezak, L.; Dezso, S.; Josep, M.G.; Adnen, C. Large photovoltaic power plants integration: A review of challenges and solutions. Energies 2019, 12, 3798. [Google Scholar]
- Kim, H.S.; Aslam, M.; Choi, M.S.; Lee, S.J. A study on long-term solar radiation forecasting for PV in microgrid. In Proceedings of the APAP Conference, Jeju, Korea, 16–19 October 2017. [Google Scholar]
- Peder, B.; Henrik, M.; Henrik, A.N. Online short-term solar power forecasting. Sol. Energy 2009, 83, 1772–1783. [Google Scholar]
- Nallpaneni, M.K.; Subarthra, M.S. Three years ahead solar radiation forecasting to quantify degradation influenced energy potentials from thin film (a-Si) photovoltaic system. Results Phys. 2019, 12, 701–703. [Google Scholar]
- Phathutshedzo, M.; Caston, S.; Alphonce, B.; Sophie, M. Day ahead hourly global horizontal irradiance forecasting-approach to south African data. Energies 2019, 12, 3569. [Google Scholar]
- Rezaie-Balf, M.; Maleki, N.; Kim, S.; Ashrafian, A.; Babaie-Miri, F.; Kim, N.W.; Chung, I.M.; Alaghmand, S. Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm. Energies 2019, 12, 1416. [Google Scholar] [CrossRef] [Green Version]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Ahmed, A.; Khalid, M. A review on the selected applications of forecasting models in renewable power systems. Renew. Sustain. Energy Rev. 2019, 100, 9–21. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Solar Radiation Probabilistic Forecasting by Using Multiple Linear Regression Analysis. In Proceedings of the SoutheastCon 2015, Fort Lauderdale, FL, USA, 9–12 April 2015. [Google Scholar]
- Sobrina Sobri, S.; Koohi-Kamali, S.; Rahima, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Miller, S.D.; Rogers, M.A.; Haynes, J.M.; Sengupta, M.; Heidinger, A.K. Short-term solar radiation forecasting via satellite/model coupling. Sol. Energy 2018, 168, 102–117. [Google Scholar] [CrossRef]
- Huang, J.; Perry, M. A semi-empirical approach using gradient boosting and k-nearest neighbors regression for gefcom2014 probabilistic solar radiation forecasting. Int. J. Forecast. 2016, 32, 1081–1086. [Google Scholar] [CrossRef]
- Alessandrini, S.; Monachel, D.; Sperati, S.; Cervone, G. An analog ensemble for short-term probabilistic solar radiation forecast. Appl. Energy 2015, 157, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Philipp, L.; Mathieu, D.; Hugo, T.C. Probabilistic solar forecasting using quantile regression models. Energies 2017, 10, 1591. [Google Scholar]
- Min, K.B.; Duehee, L. Spatial and temporal day-ahead total daily solar radiation forecasting: Ensemble forecasting based on the empirical biasing. Energies 2018, 11, 70. [Google Scholar]
- Yang, D.; Ye, Z.; Lim, L.H.I.; Dong, Z. Very short term radiation forecasting using the lasso. Sol. Energy 2015, 114, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting. Appl. Sci. 2018, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhenyu, W.; Cuixia, T.; Qibling, Z. Hourly solar radiation forecasting using a Volterra-least squares support vector machine model combined with signal decomposition. Energies 2018, 11, 1138. [Google Scholar] [CrossRef] [Green Version]
- Ariana, M.; Walter, R.; Rolando, V.A. Deep Learning to forecast solar radiation using a six-month UTSA SkyImager dataset. Energies 2018, 11, 1988. [Google Scholar]
- Munir, H.; Il-Yop, C. Day-ahead solar radiation forecasting for microgrids using a long-short term memory recurrent neural network: A Deep Learning approach. Energies 2019, 12, 1856. [Google Scholar]
- Jessica, W.; Matin, H.; Raju, G.; Terrence, L.C. Hour-ahead solar radiation forecasting using multivariate gated recurrent units. Energies 2019, 12, 4055. [Google Scholar]
- Rahul, A.; Frankle, M.; Madan, T. Long term load forecasting with hourly predictions based on long-short-term-memory networks. In Proceedings of the IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018. [Google Scholar]
- Mustafa, A.; Nejat, Y. Year ahead demand forecast of city natural gas using seasonal time series data. Energies 2016, 9, 727. [Google Scholar]
- John, G. Deep Learning for Time-Series Analysis. arXiv 2017, arXiv:1701.01887. Available online: https://arxiv.org/abs/1701.01887 (accessed on 14 December 2019).
- Korea Meteorological Administration. Available online: https://web.kma.go.kr/eng/index.jsp (accessed on 14 December 2019).
- Bird, R.E.; Hulstrom, R.L. Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces; Solar Energy Research Inst.: Golden, CO, USA, 2013; pp. 1–38. [Google Scholar]
- Manajit, S.; Peter, G. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates; Technical Report of National Renewable Energy Laboratory (NREL): Denver West Parkway, CO, USA, 2013; pp. 5–29. [Google Scholar]
- Ineichen, P.; Perez, R. A new airmass independent formulation for the Linke turbidity coefficient. Sol. Energy 2002, 73, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Haurwitz, B. Insolation in relation to cloudiness and cloud density. J. Meteorol. 1945, 2, 154–166. [Google Scholar] [CrossRef]
- Ineichen, A. Broadband simplified version of the Solis clear sky model. Sol. Energy 2008, 82, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. Available online: https://arxiv.org/abs/1409.1259 (accessed on 14 December 2019).
- Surabh, R. Medium: Simple RNN vs. GRU vs. LSTM: Difference Lies in More Flexible Control. Available online: https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57 (accessed on 14 December 2019).
ML 1/DL 2 Model | Ineichen and Perez | Bird | Haurwitz | Simplified Solis |
---|---|---|---|---|
SVR | 0.3995 | 0.3990 | 0.3991 | 0.3991 |
RFR | 0.4121 | 0.4112 | 0.4103 | 0.4102 |
FFNN | 0.3910 | 0.3936 | 0.3931 | 0.3943 |
RNN | 0.4042 | 0.4009 | 0.4011 | 0.4038 |
LSTM | 0.3908 | 0.3898 | 0.3897 | 0.3881 |
GRU | 0.3904 | 0.3870 | 0.3913 | 0.3892 |
Best | 0.3904 | 0.3870 | 0.3897 | 0.3881 |
Worst | 0.4121 | 0.4112 | 0.4103 | 0.4102 |
Mean | 0.3980 | 0.3969 | 0.3974 | 0.3974 |
Region | Year | SVR | RFR | FFNN | RNN | LSTM | GRU |
---|---|---|---|---|---|---|---|
Seoul | 2017 | 0.3990 | 0.4099 | 0.3928 | 0.4052 | 0.3920 | 0.3909 |
2016 | 0.3792 | 0.3863 | 0.3633 | 0.3790 | 0.3596 | 0.3598 | |
Busan | 2017 | 0.4312 | 0.4392 | 0.4229 | 0.4352 | 0.4178 | 0.4134 |
2016 | 0.4898 | 0.4870 | 0.4686 | 0.4717 | 0.4605 | 0.4582 |
Region | Year | SVR | RFR | FFNN | RNN | LSTM | GRU |
---|---|---|---|---|---|---|---|
Seoul | 2017 | 5.3618 | 5.6705 | 5.4492 | 6.0200 | 5.3696 | 5.3315 |
2016 | 4.8159 | 5.1201 | 5.1103 | 5.4520 | 4.7768 | 4.8233 | |
Busan | 2017 | 5.7498 | 5.9409 | 5.8318 | 6.2718 | 5.5752 | 5.6372 |
2016 | 6.6401 | 6.9086 | 6.5890 | 6.7759 | 6.3165 | 6.2672 |
Region | Year | LSTM (seconds) | GRU (seconds) |
---|---|---|---|
Seoul | 2017 | 1251.23 | 1004.15 |
2016 | 1060.82 | 832.63 | |
Busan | 2017 | 1269.21 | 1028.43 |
2016 | 1023.27 | 830.54 |
Region | Year | LSTM (seconds) | GRU (seconds) |
---|---|---|---|
Seoul | 2017 | 88.35 | 72.56 |
2016 | 77.98 | 64.12 | |
Busan | 2017 | 90.42 | 75.44 |
2016 | 75.99 | 64.29 |
Region | Year | Actual (MJ/m2) | SVR (MJ/m2) | RFR (MJ/m2) | FFNN (MJ/m2) | RNN (MJ/m2) | LSTM (MJ/m2) | GRU (MJ/m2) |
---|---|---|---|---|---|---|---|---|
Seoul | 2017 | 4577.29 | 4729.33 | 4326.26 | 4274.16 | 4309.46 | 4430.23 | 4443.65 |
2016 | 4520.88 | 5154.55 | 4377.96 | 4295.38 | 4018.72 | 4450.80 | 4422.67 | |
Busan | 2017 | 5418.94 | 6113.09 | 5029.50 | 5154.51 | 5370.55 | 5438.85 | 5426.70 |
2016 | 5025.29 | 5733.47 | 5331.14 | 5387.45 | 5315.51 | 5222.49 | 5098.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M.; Lee, J.-M.; Kim, H.-S.; Lee, S.-J.; Hong, S. Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study. Energies 2020, 13, 147. https://doi.org/10.3390/en13010147
Aslam M, Lee J-M, Kim H-S, Lee S-J, Hong S. Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study. Energies. 2020; 13(1):147. https://doi.org/10.3390/en13010147
Chicago/Turabian StyleAslam, Muhammad, Jae-Myeong Lee, Hyung-Seung Kim, Seung-Jae Lee, and Sugwon Hong. 2020. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study" Energies 13, no. 1: 147. https://doi.org/10.3390/en13010147
APA StyleAslam, M., Lee, J.-M., Kim, H.-S., Lee, S.-J., & Hong, S. (2020). Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study. Energies, 13(1), 147. https://doi.org/10.3390/en13010147