A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms
Abstract
:1. Introduction
1.1. Significance and Problem Statement
1.2. Related Literature
1.3. Objectives
- To develop a partially amended hybrid model (PAHM) consisting of deep RNN (Bi-GRU) with statistical ARIMA model.
- To develop an algorithm combining the decomposition process, deep RNN, and ARIMA models in a novel way.
- To improve the forecasting accuracies of solar irradiance in short terms as compared to the classical hybrid models.
- To test models with a k-fold cross validation and classify the models according to computational efficiencies.
1.4. Contents of the Paper
2. Materials and Methods
2.1. Deep RNN Architecture Development
2.2. ARIMA Model Description
2.3. Naive Decomposition Method
2.4. Experimental Design
2.4.1. Data Preparation
2.4.2. Classical Hybrid Model
2.5. Partially Amended Hybrid Model (PAHM)
2.5.1. Performance Metrics
Accuracy Level Check
K-Fold Cross Validation of the Models
Computational Costs of the Models
- Windows 10 Pro
- Processor: AMD Ryzen 3 2200G with Radeon Vega Graphics 3.50 GHz
- RAM: 4.00 GB
- 64-bit Operating System
3. Results and Discussions
3.1. Time Series Dataset Preprocessing
3.1.1. Data Checkup
3.1.2. Variable Characteristics
3.2. Single Model Results
3.3. K-Fold Cross Validation Results of the Single Models
3.4. Computational Cost Efficiencies
3.5. Classical Hybrid Model Performance
3.6. PAHM Performances
3.7. Final Comparisons of Different Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kopp, G.; Krivova, N.; Wu, C.J.; Lean, J. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions. Sol. Phys. 2016, 291, 2951–2965. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.F.; Troncoso, A.; Koprinska, I.; Wang, Z.; Martínez-Álvarez, F. Deep Learning for Big Data Time Series Forecasting Applied to Solar Power. In International Joint Conference SOCO’18-CISIS’18-ICEUTE’18; Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 771, pp. 123–133. ISBN 978-3-319-94119-6. [Google Scholar]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- International Energy Agency. Renewables 2017: Analysis and Forecast to 2022; IEA: Paris, France, 2017; Available online: https://www.iea.org/renewables2017/#section-1-2 (accessed on 2 June 2019).
- The World Bank. Solar resource maps of Republic of Korea. Source: Global Solar Atlas 2.0, Solar resource data: Solargis. 2019. Available online: https://solargis.com/maps-and-gis-data/download/republic-of-korea (accessed on 1 January 2020).
- Inman, R.H.; Pedro, H.T.C.; Coimbra, C.F.M. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013, 39, 535–576. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.-L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K. Wavelet decomposition and convolutional LSTM networks based improved deep learning model for solar irradiance forecasting. Appl. Sci. 2018, 8, 1286. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble Methods for Wind and Solar Power Forecasting—A State-of-the-art Review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Sun, Q.; Nie, L.; Yao, J.; Zhao, G. A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks. Energies 2015, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Ahmed Mohammed, A.; Aung, Z. Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation. Energies 2016, 9, 1017. [Google Scholar] [CrossRef]
- Cheng, L.; Zang, H.; Ding, T.; Sun, R.; Wang, M.; Wei, Z.; Sun, G. Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach. Energies 2018, 11, 1958. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.Q.; Nadarajah, M. A Multivariate Ensemble Framework for Short Term Solar PV Output Power Forecast. In Proceedings of the IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Jaihuni, M.; Basak, J.K.; Khan, F.; Okyere, F.G.; Sihalath, T.; Bhujel, A.; Park, J.; Hyun, L.D.; Kim, H.T. A Novel Recurrent Neural Network Approach in Forecasting Short term Solar Irradiance. ISA Trans. 2020. Unpublished work. [Google Scholar]
- Bhandari, B.; Lee, K.-T.; Lee, G.-Y.; Cho, Y.-M.; Ahn, S.-H. Optimization of hybrid renewable energy power systems: A review. Int. J. Precis. Eng. Manuf.-Green Tech. 2015, 2, 99–112. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R. Recurrent Neural Networks for Short-Term Load Forecasting: An Overview and Comparative Analysis; Springer Briefs in Computer Science; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-70337-4. [Google Scholar]
- Spacagna, G.; Slater, D.; Zocca, V.; Roelants, P.; Vasilev, I. Computer Vision with Convolutional Networks. In Python Deep Learning; Packt Publishing: Birmingham, UK, 2019; pp. 93–121. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Caterini, A.L.; Chang, D.E. Deep Neural Networks in a Mathematical Framework, 1st ed.; Springer: Oxford, UK, 2018; pp. 77–79. [Google Scholar]
- Adhikari, R.; Agrawal, R.K. An Introductory Study on Time Series Modeling and Forecasting. arXiv 2013, arXiv:1302.6613. [Google Scholar]
- Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340. [Google Scholar] [CrossRef]
- Boyd, G.; Na, D.; Li, Z.; Snowling, S.; Zhang, Q.; Zhou, P. Influent Forecasting for Waste water Treatment Plantsin North America. Sustainability 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer: Cham, UK, 2018; pp. 271–309. [Google Scholar]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis, Forecasting and Control, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 88–114. [Google Scholar]
- Wu, Y.-K.; Chen, C.-R.; Abdul Rahman, H. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation. Int. J. Photoenergy 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kisi, O.; Seo, Y.; Singh, V.P.; Lee, C.-J. Assessment of rainfall aggregation and disaggregation using data-driven models and wavelet decomposition. Hydrol. Res. 2017, 48, 99–116. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 2015, 520, 224–243. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Classical Decomposition. Available online: https://otexts.com/fpp2/classical-decomposition.html (accessed on 15 October 2019).
- How to Create an ARIMA Model for Time Series Forecasting in Python. Available online: https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/ (accessed on 15 October 2019).
- Hyndman, R.J.; Athanasopouos, G. Forecasting: Principles & Practice, 2nd ed.; Otexts: Melbourne, Australia, 2018; pp. 72–83. [Google Scholar]
- Neal, B.; Mittal, S.; Baratin, A.; Tantia, V.; Scicluna, M.; Lacoste-Julien, S.; Mitliagkas, I. A Modern Take on the Bias-Variance Trade off in Neural Networks. arXiv 2018, arXiv:1810.08591. [Google Scholar]
- Climate of Korea. Available online: http://web.kma.go.kr/eng/biz/climate_01.jsp (accessed on 20 October 2019).
- Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, New York, NY, USA, 2018; ISBN 978-1-61729-443-3. [Google Scholar]
- Laurent, C.; Pereyra, G.; Brakel, P.; Zhang, Y.; Bengio, Y. Batch normalized recurrent neural networks. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2657–2661. [Google Scholar]
- Ghritlahre, H.K.; Prasad, R.K. Application of ANN technique to predict the performance of solar collector systems—Areview. Renew. Sustain. Energy Rev. 2018, 84, 75–88. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Snowling, S.; Siam, A.; El-Dakhakhni, W. Predictive models for waste water flow forecasting based on time series analysis and artificial neural network. Water Sci. Technol. 2019, 80, 243–253. [Google Scholar] [CrossRef] [PubMed]
Network Type | Transfer Function | Optimizer | Neurons | Hidden Layers | Neuron Distribution | Epoch |
---|---|---|---|---|---|---|
Bi-GRU | linear | Adam | 160 | 2 | 32+128 | 250 |
(a) 60-min Time-Series Dataset | |||||
Solar Irradiance (Wm−2) | Wind Speed (ms−1) | Air Temperature (°C) | Relative Humidity (%) | Sun Hour | |
Count | 14,756 | 14,756 | 14,756 | 14,756 | 14,756 |
Mean | 265.67 | 0.87 | 16.91 | 61.02 | 0.15 |
Standard Deviation | 262.71 | 0.43 | 10.23 | 23.71 | 0.15 |
Minimum | 0.00 | 0.23 | −13.30 | 7.76 | 0.00 |
25% | 17.15 | 0.52 | 9.25 | 42.07 | 0.00 |
50% | 185.15 | 0.79 | 18.21 | 60.73 | 0.09 |
75% | 467.80 | 1.12 | 24.96 | 84.20 | 0.33 |
Maximum | 943.00 | 2.50 | 38.24 | 96.90 | 0.34 |
(b) 5-min Time Series Dataset | |||||
Solar Irradiance (Wm−2) | Wind Speed (ms−1) | Air Temperature (°C) | Relative Humidity (%) | ||
Count | 174,914 | 174,914 | 174,914 | 174,914 | |
Mean | 269.1 | 0.9 | 17.3 | 59.5 | |
Standard Deviation | 270.9 | 0.5 | 10.2 | 23.3 | |
Minimum | 0.0 | 0.1 | −13.5 | 7.6 | |
25% | 18.9 | 0.5 | 9.6 | 41.0 | |
50% | 181.8 | 0.8 | 18.8 | 58.7 | |
75% | 469.6 | 1.2 | 25.3 | 80.8 | |
Maximum | 1172.0 | 3.5 | 38.9 | 96.9 |
Solar Irradiance (Wm−2) | ||
---|---|---|
60-min | 5-min | |
Wind Speed (ms−1) | 0.50 | 0.42 |
Air Temperature (°C) | 0.41 | 0.38 |
Relative Humidity (%) | −0.59 | −0.53 |
Sun Hour | 0.81 |
Prediction Interval | Network Type | Transfer Function | Optimizer | Neurons | Hidden Layers | Neuron Distribution | Epoch |
---|---|---|---|---|---|---|---|
5 min | Bi-GRU | linear | Adam | 224 | 5 | 32/64/64/32/32 | 250 |
60 min | Bi-GRU | linear | Adam | 96 | 3 | 32/32/32 | 250 |
5-min | 60-min | |||||
---|---|---|---|---|---|---|
RMSE (W/m2) | R2 | MAE (W/m2) | RMSE (W/m2) | R2 | MAE (W/m2) | |
Bi-GRU | 72.28 | 0.93 | 34.16 | 104.4 | 0.84 | 77.63 |
ARIMA | 70.04 | 0.94 | 34.55 | 100.4 | 0.86 | 69.54 |
Time Consumed by Bi-GRU (s) | Time Consumed by ARIMA (s) | |
---|---|---|
60-min predictions | 102 | >2000 |
5-min predictions | 1645 | >10,800 |
Very Short-Term (5 min) | Short-Term (60 min) | |
---|---|---|
RMSE (W/m2) | 253.6 | 59.65 |
R2 | 0.24 | 0.94 |
MAE (W/m2) | 166.22 | 43.66 |
Very Short-Term (5 min) | Short-Term (60 min) | |
---|---|---|
RMSE (W/m2) | 137.9 | 52.64 |
R2 | 0.78 | 0.96 |
MAE (W/m2) | 90 | 39.66 |
RMSE Improvements | ||||
Classical Hybrid Model | PAHM | |||
5-min | 60-min | 5-min | 60-min | |
ARIMA | −262% | 41% | −97% | 48% |
Bi-GRU | −251% | 43% | −91% | 50% |
MAE Improvements | ||||
Classical Hybrid Model | PAHM | |||
5-min | 60-min | 5-min | 60-min | |
ARIMA | −381% | 37% | −160% | 38% |
Bi-GRU | −387% | 44% | −163% | 49% |
R2 Improvements | ||||
Classical Hybrid Model | PAHM | |||
5-min | 60-min | 5-min | ||
ARIMA | −74% | 9% | −17% | 12% |
Bi-GRU | −74% | 12% | −16% | 14% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaihuni, M.; Basak, J.K.; Khan, F.; Okyere, F.G.; Arulmozhi, E.; Bhujel, A.; Park, J.; Hyun, L.D.; Kim, H.T. A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms. Energies 2020, 13, 435. https://doi.org/10.3390/en13020435
Jaihuni M, Basak JK, Khan F, Okyere FG, Arulmozhi E, Bhujel A, Park J, Hyun LD, Kim HT. A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms. Energies. 2020; 13(2):435. https://doi.org/10.3390/en13020435
Chicago/Turabian StyleJaihuni, Mustafa, Jayanta Kumar Basak, Fawad Khan, Frank Gyan Okyere, Elanchezhian Arulmozhi, Anil Bhujel, Jihoon Park, Lee Deog Hyun, and Hyeon Tae Kim. 2020. "A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms" Energies 13, no. 2: 435. https://doi.org/10.3390/en13020435
APA StyleJaihuni, M., Basak, J. K., Khan, F., Okyere, F. G., Arulmozhi, E., Bhujel, A., Park, J., Hyun, L. D., & Kim, H. T. (2020). A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms. Energies, 13(2), 435. https://doi.org/10.3390/en13020435