Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Flue Gas and Baseline Process
2.2. Modeling of Deep Eutectic Solvents
2.3. Process Model for CO2 Absorption
Dual-Stage DES-Based Absorption System
- Henry’s law is valid for all absorption and desorption steps. This is justified by keeping the mole% of SO2 and CO2 below 3%.
- Absorber 2 operates at twice the pressure of absorber 1. This ratio was selected as it was found to be the most efficient in regards to energy demand over a wide variety of CO2 removal rates.
2.4. Process Economics
2.5. Parameters for Sensitivity Analysis
3. Results and Discussion
3.1. DES Solvent Properties
3.2. Process Design of Dual-Stage CO2 Absorption in DES
3.3. Process Economics of Dual-Stage CO2 Absorption in DES
3.4. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rao, A.B.; Rubin, E.S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef] [Green Version]
- Fout, T.; Zoelle, A.; Keairns, D.; Turner, M.; Woods, M.; Kuehn, N.; Shah, V.; Chou, V.; Pinkerton, L. Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3; Technical Report No. DOE/NETL-2015/1723; NETL: Pittsburgh, PA, USA, 2015. [Google Scholar]
- Lv, B.; Guo, B.; Zhou, Z.; Jing, G. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ. Sci. Technol. 2015, 49, 10728–10735. [Google Scholar] [CrossRef]
- Gouedard, C.; Picq, D.; Launay, F.; Carrette, P.-L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 2012, 10, 244–270. [Google Scholar] [CrossRef]
- Sexton, A.J.; Rochelle, G.T. Reaction products from the oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 2010, 50, 667–673. [Google Scholar] [CrossRef]
- Aaron, D.; Tsouris, C. Separation of CO2 from flue gas: A review. Sep. Sci. Technol. 2005, 40, 321–348. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data 2010, 55, 4632–4637. [Google Scholar] [CrossRef]
- Sze, L.L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G.A.; Baker, S.N. Ternary deep eutectic solvents tasked for carbon dioxide capture. ACS Sustain. Chem. Eng. 2014, 2, 2117–2123. [Google Scholar] [CrossRef]
- Chen, Y.; Ai, N.; Li, G.; Shan, H.; Cui, Y.; Deng, D. Solubilities of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols. J. Chem. Eng. Data 2014, 59, 1247–1253. [Google Scholar] [CrossRef]
- García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuels 2015, 29, 2616–2644. [Google Scholar] [CrossRef]
- Sarmad, S.; Mikkola, J.-P.; Ji, X. Carbon dioxide capture with ionic liquids and deep eutectic solvents: A new generation of sorbents. ChemSusChem 2017, 10, 324–352. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, C.; Lu, X.; Ji, X. Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading. Appl. Energy 2018, 225, 437–447. [Google Scholar] [CrossRef]
- Rinaldi, R. Plant biomass fractionation meets catalysis. Angew. Chem. Int. Ed. 2014, 53, 8559–8560. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Hou, M.; Ning, H.; Zhang, J.; Ma, J.; Yang, G.; Han, B. Efficient SO2 absorption by renewable choline chloride–glycerol deep eutectic solvents. Green Chem. 2013, 15, 2261–2265. [Google Scholar] [CrossRef]
- Yang, D.; Hou, M.; Ning, H.; Ma, J.; Kang, X.; Zhang, J.; Han, B. Reversible capture of SO2 through functionalized ionic liquids. ChemSusChem 2013, 6, 1191–1195. [Google Scholar] [CrossRef]
- Deng, D.; Liu, X.; Gao, B. Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents. Ind. Eng. Chem. Res. 2017, 56, 13850–13856. [Google Scholar] [CrossRef]
- Leron, R.B.; Caparanga, A.; Li, M.-H. Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15–343.15 K and moderate pressures. J. Taiwan Inst. Chem. Eng. 2013, 44, 879–885. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805. [Google Scholar] [CrossRef]
- Leron, R.B.; Li, M.-H. Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water. Thermochim. Acta 2012, 530, 52–57. [Google Scholar] [CrossRef]
- Fang, Y.; Osama, M.; Rashmi, W.; Shahbaz, K.; Khalid, M.; Mjalli, F.; Farid, M. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids. Nanotechnology 2016, 27, 075702. [Google Scholar] [CrossRef] [PubMed]
- Shaoyang, S.; Yanxia, N.; Qiang, X.; Zuchen, S.; Xionghui, W. Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride. Ind. Eng. Chem. Res. 2015, 54, 8019–8024. [Google Scholar] [CrossRef]
- Van Osch, D.J.G.P.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Leron, R.B.; Li, M.-H. High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T = (298.15 to 323.15) K and up to 50 MPa. J. Chem. Thermodyn. 2012, 54, 293–301. [Google Scholar] [CrossRef]
- Turton, R.; Bailie, R.; Whiting, W.; Shaeiwitz, J.; Bhattacharyya, D. Analysis, Synthesis, and Design of Chemical Process, 4th ed.; Prentice Hall International Series in the Physical and Chemical Engineering Sciences; Prentice Hall: Ann Arbor, MI, USA, 2012; ISBN 978-0-13-261812-0. [Google Scholar]
- Leron, R.B.; Li, M.-H. Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochim. Acta 2013, 551, 14–19. [Google Scholar] [CrossRef]
- Last, G.V.; Schmick, M.T. Identification and Selection of Major Carbon Dioxide Stream Compositions; Technical Report No. PNNL-20493; Pacific Northwest National Laboratory: Richland, WA, USA, 2011. [Google Scholar]
Variable | METPB:EG | ChCl:Urea |
---|---|---|
C (Component Moles/Mol Solvent) | 4 | 3 |
Molar Mass of DES (kg/kmol) | 543 | 260 |
Thermal Demand (kj/kg) | 44.2 [22] | 24.2 [21] |
H(CO2) (bar/mole frac) | 169 | 175 [18] |
Ρ (kg/m3) | 1240 | 1186 [21] |
Parameter | Baseline | Improved Value | Worsened Value |
---|---|---|---|
Henry’s law constant (Bar/mole Frac) | 175 | 100 | 200 |
CO2 Fraction in Flue Gas | 13.76% | 25% | 8% |
Molar Mass (g/mole DES) | 260 | 200 | 350 |
Heating Demand (kj/kg) | 24.2 | 18 | 30 |
Fraction Dissolved ( | 0.1 | ||
Pressure (bar; 2nd Stage) | Plant Output (kW) | Cost ($/kW) | |
20,000 | 13.0 | 383,193 | 2771 |
30,000 | 8.7 | 373,740 | 2814 |
40,000 | 6.5 | 363,433 | 2874 |
50,000 | 5.2 | 352,369 | 2948 |
60,000 | 4.3 | 340,637 | 3036 |
70,000 | 3.7 | 328,316 | 3139 |
80,000 | 3.2 | 315,474 | 3256 |
90,000 | 2.9 | 302,171 | 3389 |
100,000 | 2.6 | 288,461 | 3541 |
Fraction Dissolved ( | 0.2 | ||
Pressure (bar; 2nd Stage) | Plant Output (kW) | Cost ($/kW) | |
20,000 | 26.6 | 357,713 | 3019 |
30,000 | 17.7 | 345,128 | 3100 |
40,000 | 13.3 | 332,296 | 3198 |
50,000 | 10.6 | 319,231 | 3311 |
60,000 | 8.9 | 305,946 | 3440 |
70,000 | 7.6 | 292,455 | 3586 |
80,000 | 6.6 | 278,770 | 3750 |
90,000 | 5.9 | 264,902 | 3935 |
100,000 | 5.3 | 250,862 | 4145 |
Fraction Dissolved ( | 0.3 | ||
Pressure (bar; 2nd Stage) | Plant Output (kW) | Cost ($/kW) | |
20,000 * | 40.8 * | 348,454 * | 3131 * |
30,000 | 27.2 | 334,553 | 3231 |
40,000 | 20.4 | 320,539 | 3350 |
50,000 | 16.3 | 306,418 | 3486 |
60,000 | 13.6 | 292,193 | 3640 |
70,000 | 11.6 | 277,868 | 3814 |
80,000 | 10.2 | 263,449 | 4010 |
90,000 | 9.1 | 248,937 | 4232 |
100,000 | 8.2 | 234,337 | 4485 |
Fraction Dissolved | 0.1 | ||
Pressure (bar; 2nd Stage) | Plant Output (kW) | Cost ($/kW) | |
20,000 | 17.9 | 393,542 | 2718 |
30,000 | 12.0 | 394,394 | 2686 |
40,000 | 9.0 | 394,748 | 2666 |
50,000 | 7.2 | 394,648 | 2652 |
60,000 | 6.0 | 394,133 | 2644 |
70,000 | 5.1 | 393,238 | 2641 |
80,000 | 4.5 | 391,996 | 2640 |
90,000 | 4.0 | 390,436 | 2643 |
100,000 | 3.6 | 388,587 | 2649 |
Fraction Dissolved | 0.2 | ||
Pressure (bar; 2nd Stage) | Plant Output (kW) | Cost ($/kW) | |
20,000 * | 36.7 * | 374,130 * | 2907 * |
30,000 | 24.4 | 372,370 | 2894 |
40,000 | 18.3 | 370,474 | 2889 |
50,000 | 14.7 | 368,446 | 2890 |
60,000 | 12.2 | 366,294 | 2895 |
70,000 | 10.5 | 364,022 | 2902 |
80,000 | 9.2 | 361,636 | 2912 |
90,000 | 8.1 | 359,139 | 2924 |
Fraction Dissolved | 0.3 | ||
Pressure (bar; 2nd Stage) | Plant Output (kW) | Cost ($/kW) | |
20,000 * | 56.3 * | 367,237 * | 2992 * |
30,000 * | 37.5 * | 364,450 * | 2987 * |
40,000 | 28.1 | 361,604 | 2991 |
50,000 | 22.5 | 358,698 | 2999 |
60,000 | 18.8 | 355,735 | 3011 |
70,000 | 16.1 | 352,716 | 3026 |
80,000 | 14.1 | 349,643 | 3043 |
90,000 | 12.5 | 346,517 | 3062 |
100,000 | 11.3 | 343,341 | 3083 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGaughy, K.; Reza, M.T. Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents. Energies 2020, 13, 438. https://doi.org/10.3390/en13020438
McGaughy K, Reza MT. Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents. Energies. 2020; 13(2):438. https://doi.org/10.3390/en13020438
Chicago/Turabian StyleMcGaughy, Kyle, and M. Toufiq Reza. 2020. "Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents" Energies 13, no. 2: 438. https://doi.org/10.3390/en13020438
APA StyleMcGaughy, K., & Reza, M. T. (2020). Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents. Energies, 13(2), 438. https://doi.org/10.3390/en13020438