A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source
Abstract
:1. Introduction
- The paper used in the paper-based FCs construction is a very low-cost material, and consequently, the fuel cells are disposable.
- Due to the movement of reactants through capillary action, the use of external pumps is unnecessary [7].
- The ion transport is carried out through the electrolyte contained in the reactants, and as a consequence, the use of a proton or anion exchange membrane is unnecessary [10].
2. Development of FC
2.1. Materials
2.2. PtRu/C Characterization
2.3. Paper-Based Microfluidic Fuel Cell Assembly Process
2.4. Performance of the Paper-Based Microfluidic Fuel Cell
3. Results and Discussion
3.1. PtRu/C Characterization
3.2. Soft Drinks Paper-Based Microfluidic Fuel Cell Performance
3.3. Soft-Drinks Paper-Based Microfluidic Fuel Cell Performance Stack as a Possible Backup Power Supply
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, L.; Li, J.; Cai, S.; Li, X. Design and experiments of a self-charged power bank by harvesting sustainable human motion. Adv. Mech. Eng. 2016, 8, 1687814016651371. [Google Scholar] [CrossRef] [Green Version]
- Alanís-Navarro, J.; Reyes-Betanzo, C.; Moreira, J.; Sebastian, P. Fabrication and characterization of a micro-fuel cell made of metallized PMMA. J. Power Sources 2013, 242, 1–6. [Google Scholar] [CrossRef]
- Esquivel, J.; Senn, T.; Hernández-Fernández, P.; Santander, J.; Lörgen, M.; Rojas, S.; Löchel, B.; Cané, C.; Sabaté, N. Towards a compact SU-8 micro-direct methanol fuel cell. J. Power Sources 2010, 195, 8110–8115. [Google Scholar] [CrossRef]
- Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F.; Esquivel, J.; Sabaté, N.; Ledesma-García, J.; Arriaga, L.; Chávez-Ramírez, A. Direct formic acid microfluidic fuel cell design and performance evolution. J. Power Sources 2014, 269, 783–788. [Google Scholar] [CrossRef]
- Hashemi, S.; Neuenschwander, M.; Hadikhani, P.; Modestino, M.; Psaltis, D. Membrane-less micro fuel cell based on two-phase flow. J. Power Sources 2017, 348, 212–218. [Google Scholar] [CrossRef]
- Morales-Acosta, D.; Godinez, L.A.; Arriaga, L. Performance increase of microfluidic formic acid fuel cell using Pd/MWCNTs as catalyst. J. Power Sources 2010, 195, 1862–1865. [Google Scholar] [CrossRef]
- Esquivel, J.; Del Campo, F.; De La Fuente, J.G.; Rojas, S.; Sabate, N. Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ. Sci. 2014, 7, 1744–1749. [Google Scholar] [CrossRef] [Green Version]
- González-Guerrero, M.J.; Del Campo, F.J.; Esquivel, J.P.; Leech, D.; Sabaté, N. based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens. Bioelectron. 2017, 90, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Dector, A.; Galindo-De-La-Rosa, J.; Amaya-Cruz, D.; Ortíz-Verdín, A.; Guerra-Balcázar, M.; Olivares-Ramírez, J.; Arriaga, L.; Ledesma-García, J. Towards autonomous lateral flow assays: Paper-based microfluidic fuel cell inside an HIV-test using a blood sample as fuel. Int. J. Hydrogen Energy 2017, 42, 27979–27986. [Google Scholar] [CrossRef]
- Kjeang, E.; Djilali, N.; Sinton, D. Microfluidic fuel cells: A review. J. Power Sources 2009, 186, 353–369. [Google Scholar] [CrossRef]
- Lau, C.; Moehlenbrock, M.J.; Arechederra, R.L.; Falase, A.; Garcia, K.; Rincon, R.; Minteer, S.D.; Banta, S.; Gupta, G.; Babanova, S.; et al. Paper based biofuel cells: Incorporating enzymatic cascades for ethanol and methanol oxidation. Int. J. Hydrogen Energy 2015, 40, 14661–14666. [Google Scholar] [CrossRef]
- Copenhaver, T.S.; Purohit, K.H.; Domalaon, K.; Pham, L.; Burgess, B.J.; Manorothkul, N.; Galvan, V.; Sotez, S.; Gomez, F.A.; Haan, J.L. A microfluidic direct formate fuel cell on paper. Electrophoresis 2015, 36, 1825–1829. [Google Scholar] [CrossRef]
- Chino, I.; Muneeb, O.; Do, E.; Ho, V.; Haan, J.L. A paper microfluidic fuel cell powered by urea. J. Power Sources 2018, 396, 710–714. [Google Scholar] [CrossRef]
- Castillo-Martínez, L.; Amaya-Cruz, D.; Gachuz, J.; Ortega-Díaz, D.; Olivares-Ramírez, J.; Dector, D.; Duarte-Moller, A.; Villa, A.; Dector, A. Urea oxidation in a paper-based microfluidic fuel cell using Escherichia coli anode electrode. J. Phys. Conf. Ser. 2018, 1119, 012004. [Google Scholar] [CrossRef]
- González-Guerrero, M.J.; del Campo, F.J.; Esquivel, J.P.; Giroud, F.; Minteer, S.D.; Sabaté, N. based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. J. Power Sources 2016, 326, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Shyu, J.C.; Wang, P.Y.; Lee, C.L.; Chang, S.C.; Sheu, T.S.; Kuo, C.H.; Huang, K.L.; Yang, Z.Y. Fabrication and test of an air-breathing microfluidic fuel cell. Energies 2015, 8, 2082–2096. [Google Scholar] [CrossRef] [Green Version]
- Dector, D.; Olivares-Ramírez, J.; Ovando-Medina, V.; Dominguez, A.S.; Villa, A.; Duarte-Moller, A.; Sabaté, N.; Esquivel, J.; Dector, A. Fabrication and evaluation of a passive SU8-based micro direct glucose fuel cell. Microsyst. Technol. 2019, 25, 211–216. [Google Scholar] [CrossRef]
- Wen, D.; Xu, X.; Dong, S. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy Environ. Sci. 2011, 4, 1358–1363. [Google Scholar] [CrossRef]
- Yu, Y.; Han, Y.; Lou, B.; Zhang, L.; Han, L.; Dong, S. A miniature origami biofuel cell based on a consumed cathode. Chem. Commun. 2016, 52, 13499–13502. [Google Scholar] [CrossRef]
- Villarrubia, C.W.N.; Lau, C.; Ciniciato, G.P.; Garcia, S.O.; Sibbett, S.S.; Petsev, D.N.; Babanova, S.; Gupta, G.; Atanassov, P. Practical electricity generation from a paper based biofuel cell powered by glucose in ubiquitous liquids. Electrochem. Commun. 2014, 45, 44–47. [Google Scholar] [CrossRef]
- Rewatkar, P.; Goel, S. Microfluidic paper based membraneless biofuel cell to harvest energy from various beverages. J. Electrochem. Sci. Eng. 2020, 10, 49–54. [Google Scholar] [CrossRef]
- Dector, A.; Arjona, N.; Guerra-Balcázar, M.; Esquivel, J.; Campo, F.D.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. Non-Conventional Electrochemical Techniques for Assembly of Electrodes on Glassy Carbon-Like PPF Materials and Their Use in a Glucose Microfluidic Fuel-Cell. Fuel Cells 2014, 14, 810–817. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; González Peña, O.I.; Cabral Ruelas, H.; Delgado Mena, C.; Guizani, M. Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell. Energies 2019, 12, 3532. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Ramírez, J.; Ovando-Medina, V.; Ortíz-Verdín, A.; Amaya-Cruz, D.; Coronel-Hernandez, J.; Marroquín, A.; Dector, A. Lateral flow assay HIV-based microfluidic blood fuel cell. J. Phys. Conf. Ser. 2018, 1119, 012022. [Google Scholar] [CrossRef]
- Ovando-Medina, V.; Dector, A.; Antonio-Carmona, I.; Romero-Galarza, A.; Martínez-Gutiérrez, H.; Olivares-Ramírez, J. A new type of air-breathing photo-microfluidic fuel cell based on ZnO/Au using human blood as energy source. Int. J. Hydrogen Energy 2019, 44, 31423–31433. [Google Scholar] [CrossRef]
- Basu, D.; Basu, S. Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell. Electrochim. Acta 2011, 56, 6106–6113. [Google Scholar] [CrossRef]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014, 30, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Haynes, T.; Dubois, V.; Hermans, S. Particle size effect in glucose oxidation with Pd/CB catalysts. Appl. Catal. A Gen. 2017, 542, 47–54. [Google Scholar] [CrossRef]
- Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta 2018, 1031, 47–59. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Umar, A.; Amine, A.; Kumar, R.; Al-Assiri, M.; Al-Salami, A.; Baskoutas, S. Highly sensitive and selective non-enzymatic monosaccharide and disaccharide sugar sensing based on carbon paste electrodes modified with perforated NiO nanosheets. New J. Chem. 2018, 42, 964–973. [Google Scholar] [CrossRef]
- Mahshid, S.S.; Mahshid, S.; Dolati, A.; Ghorbani, M.; Yang, L.; Luo, S.; Cai, Q. Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 2011, 58, 551–555. [Google Scholar] [CrossRef]
- Basu, D.; Basu, S. A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 2010, 55, 5775–5779. [Google Scholar] [CrossRef]
- Morrison, R.; Boyd, R. Organic Chemistry, 5th ed.; Allyn and Bacon: Boston, MA, USA, 1987. [Google Scholar]
- Tao, B.; Zhao, K.; Miao, F.; Jin, Z.; Yu, J.; Chu, P.K. Fabrication of ordered porous silicon nanowires electrode modified with palladium-nickel nanoparticles and electrochemical characteristics in direct alkaline fuel cell of carbohydrates. Ionics 2016, 22, 1891–1898. [Google Scholar] [CrossRef]
- Liu, X.; Long, L.; Yang, W.; Chen, L.; Jia, J. Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing. Sens. Actuators B Chem. 2018, 266, 853–860. [Google Scholar] [CrossRef]
- Perez, J.; Villullas, H.M.; Gonzalez, E.R. Structure sensitivity of oxygen reduction on platinum single crystal electrodes in acid solutions. J. Electroanal. Chem. 1997, 435, 179–187. [Google Scholar] [CrossRef]
- Su, F.; Poh, C.K.; Tian, Z.; Xu, G.; Koh, G.; Wang, Z.; Liu, Z.; Lin, J. Electrochemical behavior of Pt nanoparticles supported on meso-and microporous carbons for fuel cells. Energy Fuels 2010, 24, 3727–3732. [Google Scholar] [CrossRef]
- Hsueh, K.; Gonzalez, E.; Srinivasan, S. Electrolyte effects on oxygen reduction kinetics at platinum: A rotating ring-disc electrode analysis. Electrochim. Acta 1983, 28, 691–697. [Google Scholar] [CrossRef]
- Gewirth, A.A.; Thorum, M.S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 2010, 49, 3557–3566. [Google Scholar] [CrossRef]
Condition | Saccharide | Coca Cola | Pepsi | Dr. Pepper | 7up |
---|---|---|---|---|---|
/mol L | /mol L | /mol L | /mol L | ||
1 | Glucose | 0.23 | 0.24 | 0.22 | 0.29 |
2 | Fructose | 0.35 | 0.36 | 0.34 | 0.25 |
3 | Maltose | 0.003 | 0.003 | 0.003 | |
Glucose | |||||
+ | Simulated | Simulated | Simulated | Simulated | |
4 | Fructose | Coca Cola | Pepsi | Dr. Pepper | 7up |
+ | |||||
Maltose |
Soft Drink | OCP | J | P MAX |
---|---|---|---|
/V | /mA cm | /mW cm | |
Coca Cola at room temperature | 0.63 ± 0.09 | 0.43 ± 0.03 | 0.061 ± 0.004 |
Cold Coca Cola | 0.60 ± 0.08 | 0.75 ± 0.06 | 0.112 ± 0.008 |
Pepsi at room temperature | 0.55 ± 0.06 | 0.34 ± 0.03 | 0.063 ± 0.003 |
Cold Pepsi | 0.62 ± 0.07 | 0.64 ± 0.05 | 0.113 ± 0.007 |
Dr. Pepper at room temperature | 0.64 ± 0.08 | 0.45 ± 0.04 | 0.060 ± 0.004 |
Cold Dr. Pepper | 0.67 ± 0.07 | 0.67 ± 0.05 | 0.111 ± 0.007 |
7up at room temperature | 0.69 ± 0.06 | 0.37 ± 0.03 | 0.073 ± 0.005 |
Cold 7up | 0.64 ± 0.05 | 0.62 ± 0.05 | 0.120 ± 0.007 |
Soft Drink | Fuel Cell Type | OCP | PMAX | Reference |
---|---|---|---|---|
/V | /mW cm | |||
Vegetable juice | Miniature glucose/air biofuel cell | 0.71 | 0.245 | [18] |
Nutri-Express | Miniature origami biofuel cell | 0.3 | ≈0.008 | [19] |
Coca Cola | Miniature origami biofuel cell | ≈0.09 | ≈0.0006 | [19] |
Gatorade | 3-cell stack paper based biofuel cell | 1.8 | 0.216 | [20] |
7up | Miniature self-pumping paper-based enzymatic biofuel cell | 0.31 | 0.0135 | [21] |
Mountain Dew | Miniature self-pumping paper-based enzymatic biofuel cell | 0.39 | 0.012 | [21] |
Pepsi | Miniature self-pumping paper-based enzymatic biofuel cell | 0.32 | 0.00615 | [21] |
Coca Cola at room temperature | Paper-based microfluidic fuel cell | 0.6 | 0.061 | This work |
Cold 7up | Paper-based microfluidic fuel cell | 0.64 | 0.12 | This work |
Cold Coca-Cola | 2 and 4-cell stack paper-based microfluidic fuel cell | 1.07 | 0.27 | This work |
1.6 | 0.39 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Rivera, J.; Ortega Díaz, D.; Amaya Cruz, D.M.; Rodríguez-Reséndiz, J.; Olivares Ramírez, J.M.; Dector, A.; Dector, D.; Galindo, R.; Esparza Ponce, H.E. A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source. Energies 2020, 13, 2443. https://doi.org/10.3390/en13102443
Hernández Rivera J, Ortega Díaz D, Amaya Cruz DM, Rodríguez-Reséndiz J, Olivares Ramírez JM, Dector A, Dector D, Galindo R, Esparza Ponce HE. A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source. Energies. 2020; 13(10):2443. https://doi.org/10.3390/en13102443
Chicago/Turabian StyleHernández Rivera, Jaime, David Ortega Díaz, Diana María Amaya Cruz, Juvenal Rodríguez-Reséndiz, Juan Manuel Olivares Ramírez, Andrés Dector, Diana Dector, Rosario Galindo, and Hilda Esperanza Esparza Ponce. 2020. "A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source" Energies 13, no. 10: 2443. https://doi.org/10.3390/en13102443
APA StyleHernández Rivera, J., Ortega Díaz, D., Amaya Cruz, D. M., Rodríguez-Reséndiz, J., Olivares Ramírez, J. M., Dector, A., Dector, D., Galindo, R., & Esparza Ponce, H. E. (2020). A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source. Energies, 13(10), 2443. https://doi.org/10.3390/en13102443