A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance
Abstract
:1. Introduction
2. Approaches and Techniques
3. Dark Fermentation
4. Pretreatment of Lignocellulosic Biomass and the Matrix of Substrate
5. Electron-Equivalent Balances in BioH2 Productions
6. Results Comparison among Different Process Intensifications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; He, J.; Yang, G.; Sun, G.; Sage, V. A Review of the Enhancement of Bio-Hydrogen Generation by Chemicals Addition. Catalysts 2019, 9, 353. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-zero emissions energy systems. Science 2018, 360, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshiro, K.; Masui, T.; Kainuma, M. Transformation of Japan’s energy system to attain net-zero emission by 2050. Carb. Manag. 2018, 9, 493–501. [Google Scholar] [CrossRef]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Dowell, N.M.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yang, G.; Zhang, L.; Sun, Z. Fischer-Tropsch synthesis in a microchannel reactor using mesoporous silica supported bimetallic Co-Ni catalyst: Process optimization and kinetic modeling. Chem. Eng. Process. 2017, 119, 44–61. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, Z.; Yang, G.; Zhang, L.; Sun, Z. Fischer-Tropsch synthesis using iron based catalyst in a microchannel reactor: Performance evaluation and kinetic modeling. Int. J. Hydrog. Energy 2017, 42, 29222–29235. [Google Scholar] [CrossRef]
- Lu, X.F.; Yu, L.; Lou, X.W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci Adv. 2019, 5, eaav6009. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Sun, P.Q.; Li, Z.; Song, K.S.; Su, W.Y.; Wang, B.; Liu, Y.Z.; Zhao, J. A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv. 2018, 4, eaap9253. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yang, G.; Wen, C.; Zhang, L.; Sun, Z. Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor. J. CO2 Util. 2018, 23, 10–21. [Google Scholar] [CrossRef]
- Chava, R.K.; Do, J.; Kang, M. Strategy for improving the visible photocatalytic H-2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Appl. Catal. B-Environ. 2019, 248, 538–551. [Google Scholar] [CrossRef]
- Wentorf, R.H.; Hanneman, R.E. Thermochemical Hydrogen Generation. Science 1974, 185, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Wismann, S.T.; Engbaek, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zhang, J.P.; Yang, G.; Li, Z.H. An improved process for preparing activated carbon with large specific surface area from corncob. Chem. Biochem. Eng. Q. 2007, 21, 169–174. [Google Scholar]
- Deluga, G.A.; Salge, J.R.; Schmidt, L.D.; Verykios, X.E. Renewable hydrogen from ethanol by autothermal reforming. Science 2004, 303, 993–997. [Google Scholar] [CrossRef]
- Tuck, C.O. Valorization of biomass: Deriving more value from Waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef]
- Shobana, S.; Kumar, G.; Bakonyi, P.; Saratale, G.D.; Al-Muhtaseb, A.H.; Nemestothy, N.; Belafi-Bako, K.; Xia, A.; Chang, J.S. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour. Technol. 2017, 244, 1341–1348. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.J.; Chang, J.S. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int. J. Hydrog. Energy 2019, 44, 14362–14379. [Google Scholar] [CrossRef]
- Prabakar, D.; Manimudi, V.T.; Suvetha, K.S.; Sampath, S.; Mahapatra, D.M.; Rajendran, K.; Pugazhendhi, A. Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects. Renew. Sustain. Energy Rev. 2018, 96, 306–324. [Google Scholar] [CrossRef]
- Woodward, J.; Orr, M.; Cordray, K.; Greenbaum, E. Biotechnology—Enzymatic production of biohydrogen. Nature 2000, 405, 1014–1015. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Stöckel, J.; Min, H.; Sherman, L.A.; Pakrasi, H.B. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat. Commun. 2010, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sivagurunathan, P.; Kumar, G.; Mudhoo, A.; Rene, E.R.; Saratale, G.D.; Kobayashi, T.; Xu, K.Q.; Kim, S.H.; Kim, D.H. Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew. Sustain. Energy Rev. 2017, 77, 28–42. [Google Scholar] [CrossRef]
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Wahid, Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- Trchounian, K.; Sawers, R.G.; Trchounian, A. Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches. Renew. Sustain. Energy Rev. 2017, 80, 1201–1216. [Google Scholar] [CrossRef]
- Khan, M.A.; Ngo, H.H.; Guo, W.S.; Liu, Y.W.; Zhang, X.B.; Guo, J.B.; Chang, S.W.; Nguyen, D.D.; Wang, J. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renew. Energy 2018, 129, 754–768. [Google Scholar] [CrossRef]
- Trad, Z.; Fontaine, J.P.; Larroche, C.; Vial, C. Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew. Energy 2016, 98, 264–282. [Google Scholar] [CrossRef]
- Azwar, M.Y.; Hussain, M.A.; Abdul-Wahab, A.K. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renew. Sustain. Energy Rev. 2014, 31, 158–173. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.J.; Kondo, A.; Chang, J.S. Recent insights into biohydrogen production by microalgae—From biophotolysis to dark fermentation. Bioresour. Technol. 2017, 227, 373–387. [Google Scholar] [CrossRef]
- Nissila, M.E.; Lay, C.H.; Puhakka, J.A. Dark fermentative hydrogen production from lignocellulosic hydrolyzates—A review. Biomass Bioenerg. 2014, 67, 145–159. [Google Scholar] [CrossRef]
- Ren, N.Q.; Zhao, L.; Chen, C.; Guo, W.Q.; Cao, G.L. A review on bioconversion of lignocellulosic biomass to H-2: Key challenges and new insights. Bioresour. Technol. 2016, 215, 92–99. [Google Scholar] [CrossRef]
- Wang, J.; Bibra, M.; Venkateswaran, K.; Salem, D.R.; Rathinam, N.K.; Gadhamshetty, V.; Sani, R.K. Biohydrogen production from space crew’s waste simulants using thermophilic consolidated bioprocessing. Bioresour. Technol. 2018, 255, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, G.; Xu, M.; Xu, J.; Sun, Z. A simple coupled ANNs-RSM approach in modeling product distribution of Fischer-Tropsch synthesis using a microchannel reactor with Ru-promoted Co/Al2O3 catalyst. Int. J. Energy Res. 2020, 44, 1046–1061. [Google Scholar] [CrossRef]
- Morra, S.; Arizzi, M.; Allegra, P.; la Licata, B.; Sagnelli, F.; Zitella, P.; Gilardi, G.; Valetti, F. Expression of different types of [FeFe]-hydrogenase genes in bacteria isolated from a population of a bio-hydrogen pilot-scale plant. Int. J. Hydrog. Energy 2014, 39, 9018–9027. [Google Scholar] [CrossRef]
- Peters, J.W.; Schut, G.J.; Boyd, E.S.; Mulder, D.W.; Shepard, E.M.; Broderick, J.B.; King, P.W.; Adams, M.W.W. [FeFe]-and [NiFe]-hydrogenase diversity, mechanism, and maturation. BBA-Mol. Cell Res. 2015, 1853, 1350–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubitz, W.; Reijerse, E.; van Gastel, M. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem. Rev. 2007, 107, 4331–4365. [Google Scholar] [CrossRef]
- Pohorelic, B.K.J.; Voordouw, J.K.; Lojou, E.; Dolla, A.; Harder, J.; Voordouw, G. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J. Bacteriol. 2002, 184, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Vignais, P.M.; Billoud, B. Occurrence, classification, and biological function of hydrogenases: An overview. Chem. Rev. 2007, 107, 4206–4272. [Google Scholar] [CrossRef]
- Kucharska, K.; Holowacz, I.; Konopacka-Lyskawa, D.; Rybarczyk, P.; Kaminski, M. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew. Energy 2018, 129, 384–408. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Yang, G.; Sun, Z. Optimization and enhancement of biohydrogen production using acid pretreated corn stover hydrolysate followed by nickel nanoparticle addition. Int. J. Energy Res. 2020, 44, 1843–1857. [Google Scholar] [CrossRef]
- Benisch, F.; Boles, E. The bacterial Entner–Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron–sulfur cluster enzyme 6-phosphogluconate dehydratase. J. Biotechnol. 2014, 171, 45–55. [Google Scholar] [CrossRef]
- Shuler, M.L.; Kargi, F.; DeLisa, M. Bioprocess Engineering: Basic Concepts, Prentice-Hall International Series in the Physical and Chemical Engineering Sciences; Prentice Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- Sun, Y.; Yang, G.; Zhang, J.P.; Wen, C.; Sun, Z. Optimization and kinetic modeling of an enhanced bio-hydrogen fermentation with the addition of synergistic biochar and nickel nanoparticle. Int. J. Energy Res. 2019, 43, 983–999. [Google Scholar] [CrossRef]
- Anderson, K.A.; Madsen, A.S.; Olsen, C.A.; Hirschey, M.D. Metabolic control by sirtuins and other enzymes that sense NAD+,, NADH, or their ratio. BBA-Bioenergetics 2017, 1858, 991–998. [Google Scholar] [CrossRef]
- Sankaran, R.; Cruz, R.A.P.; Pakalapati, H.; Show, P.L.; ChuanLing, T.; Chen, W.-H. YangTao Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresour. Technol. 2020, 298, 122476–122486. [Google Scholar] [CrossRef] [PubMed]
- Jambo, S.A.; Abdulla, R.; Azhar, S.H.M.; Marbawi, H.; Gansau, J.A.; Ravindra, P. A review on third generation bioethanol feedstock. Renew. Sustain. Energy Rev. 2016, 65, 756–769. [Google Scholar] [CrossRef]
- Ruiz, C.A.S.; Baca, S.Z.; van den Broek, L.A.M.; van den Berg, C.; Wijffels, R.H.; Eppink, M.H.M. Selective fractionation of free glucose and starch from microalgae using aqueous two-phase systems. Algal Res. 2020, 46, 101801–101810. [Google Scholar] [CrossRef]
- Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresour. Technol. 2020, 309, 123321–123330. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, L.; Li, S.; Hu, T.; Li, B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour. Technol. 2020, 301, 122804–122823. [Google Scholar] [CrossRef]
- Mathimani, T.; Mallick, N. A comprehensive review on harvesting of microalgae for biodiesel—Key challenges and future directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar] [CrossRef]
- Jiménez-Llanos, M.R.-C.J.; Rendón-Castrillón, L.; Ocampo-López, C. Sustainable biohydrogen production by Chlorella sp. microalgae: A review. Int. J. Hydrog. Energy 2020, 45, 8310–8328. [Google Scholar] [CrossRef]
- Cao, G.L.; Ren, N.Q.; Wang, A.J.; Lee, D.J.; Guo, W.Q.; Liu, B.F.; Feng, Y.J.; Zhao, Q.L. Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrog. Energy 2009, 34, 7182–7188. [Google Scholar] [CrossRef]
- Datar, R.; Huang, J.; Maness, P.C.; Mohagheghi, A.; Czemik, S.; Chornet, E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrog. Energy 2007, 32, 932–939. [Google Scholar] [CrossRef]
- Li, D.M.; Chen, H.Z. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int. J. Hydrog. Energy 2007, 32, 1742–1748. [Google Scholar] [CrossRef]
- Fan, Y.T.; Zhang, Y.H.; Zhang, S.F.; Hou, H.W.; Ren, B.Z. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour. Technol. 2006, 97, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Kongjan, P.; Angelidaki, I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour. Technol. 2010, 101, 7789–7796. [Google Scholar] [CrossRef]
- Lo, Y.C.; Lu, W.C.; Chen, C.Y.; Chang, J.-S. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour. Technol. 2010, 101, 5885–5891. [Google Scholar] [CrossRef]
- Phanduang, O.; Lunprom, S.; Salakkam, A.; Reungsang, A. Anaerobic solid-state fermentation of biohydrogen from microalgal Chlorella sp biomass. Int. J. Hydrog. Energy 2017, 42, 9650–9659. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.A.; Bakker, R.R.; de Vrije, T.; Koukios, E.G.; Claassen, P.A.M. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int. J. Hydrog. Energy 2010, 35, 7738–7747. [Google Scholar] [CrossRef]
- Shi, X.X.; Song, H.C.; Wang, C.R.; Tang, R.S.; Huang, Z.X.; Gao, T.R.; Xie, J. Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures. Int. J. Energy Res. 2010, 34, 662–672. [Google Scholar] [CrossRef]
- Pawar, S.S.; Nkemka, V.N.; Zeidan, A.A.; Murto, M.; van Niel, E.W.J. Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. Int. J. Hydrog. Energy 2013, 38, 9121–9130. [Google Scholar] [CrossRef] [Green Version]
- Talluri, S.; Raj, S.M.; Christopher, L.P. Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour. Technol. 2013, 139, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.B.; Zhu, M.J. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1. Microb. Cell Fact. 2017, 16, 77. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Salerno, M.B.; Rittmann, B.E. Thermodynamic evaluation on H2 production in glucose fermentation. Environ. Sci. Technol. 2008, 42, 2401–2407. [Google Scholar] [CrossRef] [PubMed]
- Bina, B.; Amin, M.M.; Pourzamani, H.; Fatehizadeh, A.; Ghasemian, M.; Mahdavid, M.; Taheri, E. Biohydrogen production from alkaline wastewater: The stoichiometric reactions, modeling, and electron equivalent. MethodsX 2019, 6, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Nasr, M.; Kumari, S.; Kumar, S.; Gupta, S.K.; Enitan, A.M.; Bux, F. Biohydrogen production from sugarcane bagasse hydrolysate: Effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ. Sci. Pollut. R. 2017, 24, 8790–8804. [Google Scholar] [CrossRef] [PubMed]
- Mthethwa, N.P.; Nasr, M.; Bux, F.; Kumari, S. Utilization of Pistia stratiotes aquatic weed, for fermentative biohydrogen: Electron-equivalent balance, stoichiometry, and cost estimation. Int. J. Hydrog. Energy 2018, 43, 8243–8255. [Google Scholar] [CrossRef]
- Amin, M.M.; Taheri, E.; Bina, B.; van Ginkel, S.W.; Ghasemian, M.; Puad, N.I.M.; Fatehizadeh, A. Electron flow of biological H2 production by sludge under simple thermal treatment: Kinetic study. J. Environ. Manag. 2019, 250, 109461. [Google Scholar] [CrossRef]
- Song, Y.H.; Lu, Y.; Yu, L. Stoichiometry and Thermodynamic Analysis on Biohydrogen Production from Xylose by Klebsiella oxytoca GS-4-08. Energy Fuel 2019, 33, 356–361. [Google Scholar] [CrossRef]
- Aceves-Lara, C.A.; Latrille, E.; Buffiere, P.; Bernet, N.; Steyer, J.P. Experimental determination by principal component analysis of a reaction pathway of biohydrogen production by anaerobic fermentation. Chem. Eng. Process.-Process. Intensif. 2008, 47, 1968–1975. [Google Scholar] [CrossRef]
- Blanco, V.M.C.; Oliveira, G.H.D.; Zaiat, M. Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: Performance evaluation and kinetic modeling. Renew. Energy 2019, 139, 1310–1319. [Google Scholar] [CrossRef]
- Whang, L.M.; Lin, C.A.; Liu, I.C.; Wu, C.W.; Cheng, H.H. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Bioresour. Technol. 2011, 102, 8378–8383. [Google Scholar] [CrossRef]
- Sarma, S.; Anand, A.; Dubey, V.K.; Moholkar, V.S. Metabolic flux network analysis of hydrogen production from crude glycerol by Clostridium pasteurianum. Bioresour. Technol. 2017, 242, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ciranna, A.; Santala, V.; Karp, M. Enhancing biohydrogen production of the alkalithermophile Thermobrachium celere. Int. J. Hydrog. Energy 2012, 37, 5550–5558. [Google Scholar] [CrossRef]
- Wu, C.W.; Whang, L.M.; Cheng, H.H.; Chan, K.C. Fermentative biohydrogen production from lactate and acetate. Bioresour. Technol. 2012, 113, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Depraect, O.; Leon-Becerril, E. Fermentative biohydrogen production from tequila vinasse via the lactate-acetate pathway: Operational performance, kinetic analysis and microbial ecology. Fuel 2018, 234, 151–160. [Google Scholar] [CrossRef]
- Shanmugam, S.; Hari, A.P.A.; Mathimani, T.; Felix, L.O.; Pugazhendhi, A. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 2020, 270, 117453–117464. [Google Scholar] [CrossRef]
- Nagarajan, D.; Chang, J.-S.; Lee, D.-J. Pretreatment of microalgal biomass for efficient biohydrogen production – Recent insights and future perspectives. Bioresour. Technol. 2020, 302, 122871–122885. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.Z.; Liao, Q.; Zhu, X.; Xu, T.F. Hydrolysates of lignocellulosic materials for biohydrogen production. BMB Rep. 2013, 46, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Pawar, S.S.; van Niel, E.W.J. Evaluation of assimilatory sulphur metabolism in Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 2014, 169, 677–685. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Liu, B.F.; Xie, G.J.; Wang, R.Q.; Xing, D.F.; Ding, J.; Zhou, X.; Ren, H.Y.; Ma, C.; Ren, N.Q. Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor. Biotechnol. Biofuels 2015, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Taher, E.; Amin, M.M.; Pourzamani, H.; Fatehizadeh, A.; Ghasemian, M.; Bina, B. Comparison of Acetate-butyrate and Acetate-ethanol Metabolic Pathway in Biohydrogen Production. J. Med. Signals Sens. 2020, 8, 101–107. [Google Scholar]
- Garcia-Depraect, O.; Valdez-Vazquez, I.; Rene, E.R.; Gomez-Romero, J.; Lopez-Lopez, A.; Leon-Becerril, E. Lactate- and acetate-based biohydrogen production through dark co-fermentation of tequila vinasse and nixtamalization wastewater: Metabolic and microbial community dynamics. Bioresour. Technol. 2019, 282, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Mthethwa, N.P.; Nasr, M.; Kiambi, S.L.; Bux, F.; Kumari, S. Biohydrogen fermentation from Pistia stratiotes aquatic weed, using mixed and pure bacterial cultures. Int. J. Hydrog. Energy 2019, 44, 17720–17731. [Google Scholar] [CrossRef]
- Lee, D.J.; Show, K.Y.; Su, A. Dark fermentation on biohydrogen production: Pure culture. Bioresour. Technol. 2011, 102, 8393–8402. [Google Scholar] [CrossRef] [PubMed]
- Elsharnouby, O.; Hafez, H.; Nakhla, G.; el Naggar, M.H. A critical literature review on biohydrogen production by pure cultures. Int. J. Hydrog. Energy 2013, 38, 4945–4966. [Google Scholar] [CrossRef]
- Song, W.; Ding, L.; Liu, M.; Cheng, J.; Zhou, J.; Li, Y.-Y. Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroide by mutant Enterobacter aerogenes ZJU1. Sci. Total Environ. 2020, 716, 134695–134704. [Google Scholar] [CrossRef]
- Mahato, R.K.; Kumar, D.; Rajagopalan, G. Biohydrogen production from fruit waste by Clostridium strain BOH3. Renew. Energy 2020, 153, 1368–1377. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Rupani, P.F.; Krishnan, S.; Ahmad, F.; Rezania, S.; Rashid, M.A.; Sha, C.; Din, M.F. Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species. Energy 2020, 197, 117199. [Google Scholar] [CrossRef]
- Sydney, E.B.; Novak, A.C.; Rosa, D.; Medeiros, A.B.P.; Brar, S.K.; Larroche, C.; Soccol, C.R. Screening and bioprospecting of anaerobic consortia for biohydrogen and volatile fatty acid production in a vinasse based medium through dark fermentation. Process. Biochem. 2018, 67, 1–7. [Google Scholar] [CrossRef]
- Soares, L.A.; Rabelo, C.A.B.S.; Sakamoto, I.K.; Silva, E.L.; Varesche, M.B.A. Screening and Bioprospecting of Anaerobic Consortia for Biofuel Production Enhancement from Sugarcane Bagasse. Appl. Biochem. Biotech. 2020, 190, 232–251. [Google Scholar] [CrossRef]
- Pimenta, C.J.; Costa, L.M.A.S.; Chalfoun, S.M.; Pereira, M.C.; Bastos, S.C.; Tavares, L.S. Utilization of agroindustrial residues as substrates for production of pectinolytic enzymes by the biological agent “G088”. In Microorganisms in Industry and Environment: From Scientific and Industrial Research to Consumer Products; World Scientific Publishing Co Pte Ltd.: Hackensack, NJ, USA, 2011; pp. 564–568. [Google Scholar]
- Alvarez-Guzman, C.L.; Oceguera-Contreras, E.; Ornelas-Salas, J.T.; Balderas-Hernandez, V.E.; de Leon-Rodriguez, A. Biohydrogen production by the psychrophilic G088 strain using single carbohydrates as substrate. Int. J. Hydrog. Energy 2016, 41, 8092–8100. [Google Scholar] [CrossRef]
- Alvarez-Guzman, C.L.; Balderas-Hernandez, V.E.; Gonzalez-Garcia, R.; Ornelas-Salas, J.T.; Vidal-Limon, A.M.; la Cueva, S.C.; de Leon-Rodriguez, A. Optimization of hydrogen production by the psychrophilic strain G088. Int. J. Hydrog. Energy 2017, 42, 3630–3640. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew. Sustain. Energ. Rev. 2020, 117, 109484–109500. [Google Scholar] [CrossRef]
- Engliman, N.S.; Abdul, P.M.; Wu, S.Y.; Jahim, J.M. Influence of iron II, oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. Int. J. Hydrog. Energy 2017, 42, 27482–27493. [Google Scholar] [CrossRef]
- Gadhe, A.; Sonawane, S.S.; Varma, M.N. Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. Int. J. Hydrog. Energy 2015, 40, 10734–10743. [Google Scholar] [CrossRef]
- Veeramalini, J.B.; Selvakumari, I.A.E.; Park, S.; Jayamuthunagai, J.; Bharathiraja, B. Continuous production of biohydrogen from brewery effluent using co-culture of mutated Rhodobacter M 19 and Enterobacter aerogenes. Bioresour. Technol. 2019, 286, 121402. [Google Scholar] [CrossRef]
- Castillo-Hernandez, A.; Mar-Alvarez, I.I. Moreno-Andrade, Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int. J. Hydrog. Energy 2015, 40, 17239–17245. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Ponce-Noyola, T.; Rios-Leal, E.; Poggi-Varaldo, H.M. A multivariable evaluation of biohydrogen production by solid substrate fermentation of organic municipal wastes in semi-continuous and batch operation. Int. J. Hydrog. Energy 2013, 38, 12527–12538. [Google Scholar] [CrossRef]
- Krupp, M.; Widmann, R. Biohydrogen production by dark fermentation: Experiences of continuous operation in large lab scale. Int. J. Hydrog. Energy 2009, 34, 4509–4516. [Google Scholar] [CrossRef]
- Shu, Z.; Chen, H.; Di, X.Y.; Li, Y.F. The Operation Characteristics of Biohydrogen Production in Continuous Stirred Tank Reactor with Molasses. Adv. Mater. Res. 2011, 153, 613–618. [Google Scholar] [CrossRef]
- Mahmod, S.S.; Jahim, J.M.; Abdul, P.M. Pretreatment conditions of palm oil mill effluent POME, for thermophilic biohydrogen production by mixed culture. Int. J. Hydrog. Energy 2017, 42, 27512–27522. [Google Scholar] [CrossRef]
- Ramprakash, B.; Muthukumar, K. Influence of sulfuric acid concentration on biohydrogen production from rice mill wastewater using pure and coculture of Enterobacter aerogenes and Citrobacter freundii. Int. J. Hydrog. Energy 2018, 43, 9254–9258. [Google Scholar] [CrossRef]
- Arisht, S.N.; Abdul, P.M.; Liu, C.M.; Lin, S.K.; Maaroff, R.M.; Wu, S.Y.; Jahim, J.M. Biotoxicity assessment and lignocellulosic structural changes of phosphoric acid pre-treated young coconut husk hydrolysate for biohydrogen production. Int. J. Hydrog. Energy 2019, 44, 5830–5843. [Google Scholar] [CrossRef]
- Taifor, A.F.; Zakaria, M.R.; Yusoff, M.Z.M.; Toshinari, M.; Hassan, M.A.; Shirai, Y. Elucidating substrate utilization in biohydrogen production from palm oil mill effluent by Escherichia coli. Int. J. Hydrog. Energy 2017, 42, 5812–5819. [Google Scholar] [CrossRef]
- Damayanti, A.; Sediawan, W.B. Biohydrogen Production by Reusing Immobilized Mixed Culture in Batch System. Int. J. Hydrog. Energy 2020, 9, 37–42. [Google Scholar] [CrossRef]
- Taheri, E.; Amin, M.M.; Fatehizadeh, A.; Pourzamani, H.; Bina, B.; Spanjers, H. Biohydrogen production under hyper salinity stress by an anaerobic sequencing batch reactor with mixed culture. J. Environ. Health Sci. 2018, 16, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.L.; Ren, N.Q.; Wang, A.J.; Guo, W.Q.; Zhao, L. Development of AFEX-based consolidated bioprocessing for biohydrogen production. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2012; p. 243. [Google Scholar]
- Cao, G.L.; Xia, X.F.; Zhao, L.; Wang, Z.Y.; Li, X.; Yang, Q. Development of AFEX-based consolidated bioprocessing on wheat straw for biohydrogen production using anaerobic microflora. Int. J. Hydrog. Energy 2013, 38, 15653–15659. [Google Scholar] [CrossRef]
- Haris, T.K.; Kubra, N.A.; Azbar, A.N. Biohydrogen, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Asomaning, J.; Haupt, S.; Chae, M.; Bressler, D.C. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renew. Sustain. Energy Rev. 2018, 92, 642–657. [Google Scholar] [CrossRef]
- Koutauarapu, R.; Reddy, C.V.; Babu, B.; Reddy, K.R.; Cho, M.; Shim, J. Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution—A review. Int. J. Hydrog. Energy 2020, 45, 7716–7740. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Yang, G.; Jia, Z.H.; Wen, C.; Zhang, L. Acid Hydrolysis of Corn Stover Using Hydrochloric Acid: Kinetic Modeling and Statistical Optimization. Chem. Ind. Chem. Eng. Q. 2014, 20, 531–539. [Google Scholar] [CrossRef]
- Huang, G.L.; Shi, J.X.; Langrish, T.A.G. Environmentally friendly bagasse pulping with NH4OH-KOH-AQ. J. Clean Prod. 2008, 16, 1287–1293. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, G.; Zhang, J.P.; Yao, M.S. Clean Production of Corn Stover Pulp Using Koh+Nh4oh Solution and Its Kinetics during Delignification. Chem. Ind. Chem. Eng. Q. 2012, 18, 137–145. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Yang, Y.-H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724–122737. [Google Scholar] [CrossRef]
- Rajendran, K.; Drielak, E.; Varma, V.S.; Muthusamy, S.; Kumar, G. Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–A review. Biomass Convers. Biorefinery 2018, 8, 471–483. [Google Scholar] [CrossRef]
- Nemestothy, N.; Bakonyi, P.; Rozsenberszki, T.; Kumar, G.; Kook, L.; Kelemen, G.; Kim, S.H.; Belafi-Bako, K. Assessment via the modified gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production. Int. J. Hydrog. Energy 2018, 43, 18918–18924. [Google Scholar] [CrossRef]
- Shafiei, M.; Karimi, K.; Taherzadeh, M.J. Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion. Bioresour. Technol. 2011, 102, 7879–7886. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Zhao, S.G.; Li, G.D.; Zheng, N.; Wang, J.Q.; Yu, Z.T. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresour. Technol. 2018, 253, 244–251. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2019, 90, 877–891. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass–an overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Soltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh-Bandbafha, H.; Nizami, A.S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag. 2020, 212, 112792–112803. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Romero-Garcia, J.M.; Martinez-Patino, J.C.; Ruiz-Ramos, E.; Castro-Galiano, E.; Cardona-Alzate, C.A. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 2019, 107, 587–601. [Google Scholar] [CrossRef]
- Jang, M.O.; Choi, G. Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochem. Eng. J. 2018, 134, 30–43. [Google Scholar] [CrossRef]
- Romero, I.; Lopez-Linares, J.C.; Moya, M.; Castro, E. Optimization of sugar recovery from rapeseed straw pretreated with FeCl3. Bioresour. Technol. 2018, 268, 204–211. [Google Scholar] [CrossRef]
- Kazi, F.K.; Fortman, J.A.; Anex, R.P.; Hsu, D.D.; Aden, A.; Dutta, A.; Kothandaraman, G. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010, 89, S20–S28. [Google Scholar] [CrossRef]
- Da Silva, A.R.G.; Ortega, C.E.T.; Rong, B. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour. Technol. 2016, 218, 561–570. [Google Scholar] [CrossRef]
- Guan, G.Q.; Kaewpanha, M.; Hao, X.G.; Zhu, A.M.; Kasai, Y.; Kakuta, S.; Kusakabe, K.; Abudula, A. Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell. Bioresour. Technol. 2013, 139, 280–284. [Google Scholar] [CrossRef]
- Han, T.; Yang, W.; Jönsson, P.G. Pyrolysis and subsequent steam gasification of metal dry impregnated lignin for the production of H2-rich syngas and magnetic activated carbon. Chem. Eng. J. 2020, 394, 124902–124912. [Google Scholar] [CrossRef]
Types of Feedstock | Substances | Examples | Advantages | Limitations |
---|---|---|---|---|
First generation | Food crops |
|
|
|
Second generation | Lignocellulosic resources (hemicellulose and cellulose) |
|
|
|
Third generation | Sucrose-based, Starch based, Microalgae. |
|
|
|
Microbes † | Biomass ⸸ | Composition after Pretreatment/g·L−1 | HY | HER | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose | Xylose | Acetate | Inh ‡ | mol·mol−1 | mmol·L−1·h−1 | |||
TT-W16 | CS | 2.1 | 9.0 | 1.5 | 0.5 | 2.24 | 4.9 | [51] |
AS | CS | 5.5 | 27 | 1.0 ! | 0.1 ! | 2.84 | 0.2 | [52] |
CB-AS1.209 | CS | 3.5 | 1 | 0.5 ! | 0.5 | 1.09 | 1.4 | [53] |
MM | WS | 2 ! | 4.2 ! | 1.0 ! | 0.6 ! | 1.01 | 0.3 | [54] |
AS | WS | 1.2 | 1.1 | 0.7 | 0.5 | 2.81 | 0.9 | [55] |
CB-CGS5 | RS | 0.1 | 9.2 | 0.3 | 2.6 | 0.76 | 0.6 | [56] |
CB | SB | 11 | 11 | 2.5 | 0.1 | 1.73 | 1.6 | [57] |
CS* | SS | 31 | 13 | 2.1 | 0.1 | 2.6 | 2.1 | [58] |
MM | SS | 2 ! | 6 ! | 1.1 ! | 0.1 ! | 2.1 | 0.4 | [59] |
CS* | WS | 7 | 3 | 0.4 | 0.1 | 3.1 | 9.7 | [60] |
CS-8903 | SG | 1.8 | 1.5 | 1.1 | 0.1 | 1.6 | 0.2 | [61] |
TT-MJ1 | SB | 1.5 | 12 | 2.5 | 0.1 | 2.2 | 1.1 | [62] |
STDEV | 8.53 | 7.36 | 0.81 | 0.71 | 0.78 | 2.77 |
Substrate | Biomass /% | Acetate /% | Butyrate /% | Propionate /% | HY mol·mol−1 | HER mmol·L−1.h−1 | Microbes | Operation /− | Reference |
---|---|---|---|---|---|---|---|---|---|
Cornstover/ | 22.6 | 22.1 | 31.5 | 15.5 | 0.9 | 0.2 | CB | Bat | [39] |
Cornstover+NP Ni | 21.9 | 21.9 | 31.6 | 15.3 | 1.2 | 0.3 | CB | Bat | [39] |
Organic wastewater | 2 | 56.5 | 24.4 | 9.1 | 1.3 | 0.5 | AS | Cont | [64] |
Sugarcane | 17.3 | 22.1 | 47.7 | 7.1 | 0.9 | 2.3 | CL | Bat | [65] |
Sugarcane+Fe2+ | 13.5 | 23.3 | 47.5 | 2.1 | 1.3 | 2.2 | CL | Bat | [65] |
Pistia stratiotes | 25.3 | 25.9 | 19.2 | 2.2 | 2.6 | 1.7 | AS | Bat | [66] |
Glucose | 1 | 37.8 | 3.4 | 17.9 | 2.7 | 9 | AS | Bat | [67] |
Xylose | 5.6 | 18.7 | - | - | 1.1 | 0.2 | KO | Bat | [68] |
Sucrose | 9.1 | 47.6 | 41.2 | 3.5 | 0.7 | 10 | AS | Cont | [69] |
SW-CWP | 1.2 | 11.8 | 39.9 | 27.3 * | 1.4 | 2.9 | AS | Cont | [70] |
Glucose | 6.8 | 15 | 10 | 3.5 | 1.0 | 2 | CT | Cont | [71] |
Glycerol | 8.3 | 6 | 42.5 | 1.8 # | 0.6 | 2.7 | CP | Bat | [72] |
Glucose | 1 | 47.3 | − | − | 3.5 | 41 | TC | Bat | [73] |
Lac/Ace | 7.2 | 17.2 | 68.8 | − | 0.4 | 6.6 | AS | Cont | [74] |
TV | 5.8 | 16.1 | 54.4 | 11.9 # | 1.9 | 7 | PT | Cont | [75] |
Types of Pretreatment | Merits | Drawbacks | References |
---|---|---|---|
Physical Millings |
|
| [119] |
Microwave |
|
| [120] |
Chemical Acid |
|
| [116] |
Alkaline |
|
| [118] |
Ionic liquid |
|
| [121] |
Organosolv |
|
| [122] |
Ozonolysis |
|
| [123] |
Steam explosion |
|
| [124] |
Biological Enzymatic |
|
| [125] |
Fungal |
|
| [126] |
Microbial consortium |
|
| [127] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Min, J.; Feng, X.; He, Y.; Liu, J.; Wang, Y.; He, J.; Do, H.; Sage, V.; Yang, G.; et al. A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies 2020, 13, 2451. https://doi.org/10.3390/en13102451
Liu Y, Min J, Feng X, He Y, Liu J, Wang Y, He J, Do H, Sage V, Yang G, et al. A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies. 2020; 13(10):2451. https://doi.org/10.3390/en13102451
Chicago/Turabian StyleLiu, Yiyang, Jingluo Min, Xingyu Feng, Yue He, Jinze Liu, Yixiao Wang, Jun He, Hainam Do, Valérie Sage, Gang Yang, and et al. 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance" Energies 13, no. 10: 2451. https://doi.org/10.3390/en13102451
APA StyleLiu, Y., Min, J., Feng, X., He, Y., Liu, J., Wang, Y., He, J., Do, H., Sage, V., Yang, G., & Sun, Y. (2020). A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies, 13(10), 2451. https://doi.org/10.3390/en13102451