IT2 Fuzzy-Based Multidimensional Evaluation of Coal Energy for Sustainable Economic Development
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Pollution
2.2. Health Problems
2.3. Macroeconomic Problems
2.4. Cost Effectiveness
3. An Analysis on Coal Energy Usage
3.1. Materials and Methods
3.2. Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
IT2 Fuzzy Sets
IT2 Fuzzy DANP
Dimension 1 | Dimension 2 | Dimension 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | |
Social (Dimension 1) | - | - | - | M | VL | L | VL | VVL | VL |
Economic (Dimension 2) | VH | H | H | - | - | - | M | M | M |
Efficiency (Dimension 3) | VH | H | VH | L | M | L | - | - | - |
Criterion 1 | Criterion 2 | Criterion 3 | Criterion 4 | Criterion 5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | |
Criterion 1 | - | - | - | VH | H | VH | VH | VHH | VH | VHH | VHH | VH | M | M | H |
Criterion 2 | M | M | M | - | - | - | VH | H | VH | H | H | VH | M | M | M |
Criterion 3 | M | VL | M | M | VL | VH | - | - | - | M | M | M | VL | L | VL |
Criterion 4 | VL | L | VVL | VVL | VL | M | M | M | M | - | - | - | VL | L | L |
Criterion 5 | VL | L | L | L | VL | L | M | L | VL | VL | VL | L | - | - | - |
Criterion 6 | L | L | VL | VL | VL | VL | M | VL | L | L | L | M | VL | M | L |
Criterion 7 | VL | VL | VL | VL | L | M | M | L | M | L | M | VH | VH | M | M |
Criterion 8 | VL | VL | L | VL | L | L | H | M | M | M | M | H | VH | M | L |
Criterion 9 | L | VL | VVL | VL | L | VL | M | M | L | L | M | H | M | M | H |
Criterion 6 | Criterion 7 | Criterion 8 | Criterion 9 | ||||||||||||
DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | ||||
Criterion 1 | H | H | VH | VH | H | H | M | VH | VH | H | VH | VH | |||
Criterion 2 | H | M | H | H | H | H | H | M | VH | H | H | M | |||
Criterion 3 | VL | VL | M | M | M | VVL | VL | L | VL | VL | VL | VVL | |||
Criterion 4 | M | VL | M | M | M | L | M | VVL | M | L | VL | VL | |||
Criterion 5 | L | VL | VL | L | VL | L | L | L | L | L | L | VL | |||
Criterion 6 | - | - | - | L | M | M | VL | M | H | M | M | H | |||
Criterion 7 | M | M | L | - | - | - | M | M | H | M | M | M | |||
Criterion 8 | M | VL | M | M | M | M | - | - | - | L | M | M | |||
Criterion 9 | M | M | M | M | L | M | L | M | H | - | - | - |
D1 | D2 | D3 | |
---|---|---|---|
D1 | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.22, 0.35, 0.35, 0.50; 1,1), (0.27, 0.35, 0.35, 0.45; 0.90, 0.90)) | ((0.07, 0.17, 0.17, 0.30; 1, 1), (0.12, 0.17, 0.17, 0.25; 0.90, 0.90)) |
D2 | ((0.55, 0.70, 0.70, 0.83; 1, 1), (0.60, 0.70, 0.70, 0.78; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) |
D3 | ((0.60, 0.75, 0.75, 0.87; 1, 1), (0.65, 0.75, 0.75, 0.82; 0.90, 0.90)) | ((0.25, 0.40, 0.40, 0.55; 1, 1), (0.30, 0.40, 0.40, 0.50; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
C1 | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.60, 0.75, 0.75, 0.87; 1, 1), (0.65, 0.75, 0.75, 0.82; 0.90, 0.90)) | ((0.43, 0.53, 0.53, 0.60; 1, 1), (0.47, 0.53, 0.53, 0.57; 0.90, 0.90)) | ((0.22, 0.35, 0.35, 0.50; 1, 1), (0.27, 0.35, 0.35, 0.45; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) |
C2 | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.60, 0.75, 0.75, 0.87; 1, 1), (0.65, 0.75, 0.75, 0.82; 0.90, 0.90)) | ((0.55, 0.70, 0.70, 0.83; 1, 1), (0.60, 0.70, 0.70, 0.78; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) |
C3 | ((0.27, 0.40, 0.40, 0.55; 1, 1), (0.32, 0.40, 0.40, 0.50; 0.90, 0.90)) | ((0.37, 0.50, 0.50, 0.63; 1, 1), (0.42, 0.50, 0.50, 0.58; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) |
C4 | ((0.10, 0.22, 0.22, 0.35; 1, 1), (0.15, 0.22, 0.22, 0.30; 0.90, 0.90)) | ((0.15, 0.27, 0.27, 0.40; 1, 1), (0.20, 0.27, 0.27, 0.35; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) |
C5 | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) | ((0.22, 0.35, 0.35, 0.50; 1, 1), (0.27, 0.35, 0.35, 0.45; 0.90, 0.90)) | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) |
C6 | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) | ((0.10, 0.22, 0.22, 0.35; 1, 1), (0.15, 0.22, 0.22, 0.30; 0.90, 0.90)) | ((0.22, 0.35, 0.35, 0.50; 1, 1), (0.27, 0.35, 0.35, 0.45; 0.90, 0.90)) | ((0.25, 0.40, 0.40, 0.55; 1, 1), (0.30, 0.40, 0.40, 0.50; 0.90, 0.90)) | ((0.22, 0.35, 0.35, 0.50; 1, 1), (0.27, 0.35, 0.35, 0.45; 0.90, 0.90)) |
C7 | ((0.10, 0.22, 0.22, 0.35; 1, 1), (0.15, 0.22, 0.22, 0.30; 0.90, 0.90)) | ((0.22, 0.35, 0.35, 0.50; 1, 1), (0.27, 0.35, 0.35, 0.45; 0.90, 0.90)) | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) | ((0.45, 0.60, 0.60, 0.75; 1, 1), (0.50, 0.60, 0.60, 0.70; 0.90, 0.90)) |
C8 | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) |
C9 | ((0.10, 0.22, 0.22, 0.35; 1, 1), (0.15, 0.22, 0.22, 0.30; 0.90, 0.90)) | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) |
C6 | C7 | C8 | C9 | ||
C1 | ((0.55, 0.70, 0.70, 0.83; 1, 1), (0.60, 0.70, 0.70, 0.78; 0.90, 0.90)) | ((0.55, 0.70, 0.70, 0.83; 1, 1), (0.60, 0.70, 0.70, 0.78; 0.90, 0.90)) | ((0.55, 0.70, 0.70, 0.83; 1, 1), (0.60, 0.70, 0.70, 0.78; 0.90, 0.90)) | ((0.60, 0.75, 0.75, 0.87; 1, 1), (0.65, 0.75, 0.75, 0.82; 0.90, 0.90)) | |
C2 | ((0.45, 0.60, 0.60, 0.75; 1, 1), (0.50, 0.60, 0.60, 0.70; 0.90, 0.90)) | ((0.50, 0.65, 0.65, 0.80; 1, 1), (0.55, 0.65, 0.65, 0.75; 0.90, 0.90)) | ((0.50, 0.65, 0.65, 0.80; 1, 1), (0.55, 0.65, 0.65, 0.75; 0.90, 0.90)) | ((0.45, 0.60, 0.60, 0.75; 1, 1), (0.50, 0.60, 0.60, 0.70; 0.90, 0.90)) | |
C3 | ((0.18, 0.30, 0.30, 0.45; 1, 1), (0.23, 0.30, 0.30, 0.40; 0.90, 0.90)) | ((0.23, 0.37, 0.37, 0.50; 1, 1), (0.28, 0.37, 0.37, 0.45; 0.90, 0.90)) | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) | ((0.07, 0.17, 0.17, 0.30; 1, 1), (0.12, 0.17, 0.17, 0.25; 0.90, 0.90)) | |
C4 | ((0.27, 0.40, 0.40, 0.55; 1, 1), (0.32, 0.40, 0.40, 0.50; 0.90, 0.90)) | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0.23, 0.37, 0.37, 0.50; 1, 1), (0.28, 0.37, 0.37, 0.45; 0.90, 0.90)) | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) | |
C5 | ((0.13, 0.25, 0.25, 0.40; 1, 1), (0.18, 0.25, 0.25, 0.35; 0.90, 0.90)) | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) | ((0.20, 0.35, 0.35, 0.50; 1.00, 1.00), (0.25, 0.35, 0.35, 0.45; 0.90, 0.90)) | ((0.17, 0.30, 0.30, 0.45; 1, 1), (0.22, 0.30, 0.30, 0.40; 0.90, 0.90)) | |
C6 | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0.32, 0.45, 0.45, 0.60; 1.00, 1.00), (0.37, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) | |
C7 | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.40, 0.55, 0.55, 0.70; 1, 1), (0.45, 0.55, 0.55, 0.65; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | |
C8 | ((0.27, 0.40, 0.40, 0.55; 1, 1), (0.32, 0.40, 0.40, 0.50; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | |
C9 | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0.30, 0.45, 0.45, 0.60; 1, 1), (0.35, 0.45, 0.45, 0.55; 0.90, 0.90)) | ((0.35, 0.50, 0.50, 0.65; 1.00, 1.00), (0.40, 0.50, 0.50, 0.60; 0.90, 0.90)) | ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 0.90, 0.90)) |
References
- Aragón, F.M.; Rud, J.P.; Toews, G. Resource shocks, employment, and gender: Evidence from the collapse of the UK coal industry. Labour Econ. 2018, 52, 54–67. [Google Scholar] [CrossRef]
- Bunn, D.W.; Redondo-Martin, J.; Muñoz-Hernandez, J.I.; Diaz-Cachinero, P. Analysis of coal conversion to biomass as a transitional technology. Renew. Energy 2019, 132, 752–760. [Google Scholar] [CrossRef]
- Galindev, R.; Baatarzorig, T.; Batbayar, N.; Begz, D.; Davaa, U.; Tserendorj, O. The Economic and Environmental Impact of Foreign Direct Investment on the Mongolian Coal-Export Sector. Partnersh. Econ. Policy Work. Pap. 2019. [Google Scholar] [CrossRef] [Green Version]
- Mbedzi, M.; van der Poll, H.; van der Poll, J. An Information Framework for Facilitating Cost Saving of Environmental Impacts in the Coal Mining Industry in South Africa. Sustainability 2018, 10, 1690. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A. Behind the life cycle of coal: Socio-environmental liabilities of coal mining in Cesar, Colombia. Ecol. Econ. 2015, 120, 71–82. [Google Scholar] [CrossRef]
- Minichilli, F.; Gorini, F.; Bustaffa, E.; Cori, L.; Bianchi, F. Mortality and hospitalization associated to emissions of a coal power plant: A population-based cohort study. Sci. Total Environ. 2019, 694, 133757. [Google Scholar] [CrossRef]
- Clark, R.; Zucker, N.; Urpelainen, J. The future of coal-fired power generation in Southeast Asia. Renew. Sustain. Energy Rev. 2020, 121, 109650. [Google Scholar] [CrossRef]
- Huang, X.; Chen, H.; Long, R.; Li, S. Development and validation of the quality of life scale for Chinese coal miners with pneumoconiosis (QOL-CMP): Measurement method and empirical study. J. Clean. Prod. 2019, 232, 1062–1075. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Martínez, L. Interval type 2-based hybrid fuzzy evaluation of financial services in E7 economies with DEMATEL-ANP and MOORA methods. Appl. Soft Comput. 2019, 79, 186–202. [Google Scholar] [CrossRef]
- Shukla, A.K.; Yadav, M.; Kumar, S.; Muhuri, P.K. Veracity handling and instance reduction in big data using interval type-2 fuzzy sets. Eng. Appl. Artif. Intell. 2020, 88, 103315. [Google Scholar] [CrossRef]
- Wang, B.; Cui, C.Q.; Zhao, Y.X.; Yang, B.; Yang, Q.Z. Carbon emissions accounting for China’s coal mining sector: Invisible sources of climate change. Nat. Hazards 2019, 99, 1345–1364. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Pinto, D.; Tutikian, B.F.; da Boit, K.; Saikia, B.K.; Silva, L.F. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mines. J. Clean. Prod. 2019, 215, 1140–1148. [Google Scholar] [CrossRef]
- Shapiro, M.A.; Bolsen, T. Korean perceptions of transboundary air pollution and domestic coal development: Two framing experiments. Energy Policy 2019, 126, 333–342. [Google Scholar] [CrossRef]
- Oskarsson, P.; Bedi, H.P. Extracting environmental justice: Countering technical renditions of pollution in India’s coal industry. Extr. Ind. Soc. 2018, 5, 340–347. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X.; Zhang, S. Integrating synergistic effects of air pollution control technologies: More cost-effective approach in the coal-fired sector in China. J. Clean. Prod. 2018, 199, 1035–1042. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Tian, Y.; Cheng, W.; Yang, J.; Xu, D.; Wang, Y.; Xie, K.; Ku, A.Y. Reduction of carbon emissions from China’s coal-fired power industry: Insights from the province-level data. J. Clean. Prod. 2020, 242, 118518. [Google Scholar]
- Feng, Q.; Huang, Q.; Zheng, Q.; Lu, L. New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry. Sustainability 2018, 10, 2923. [Google Scholar] [CrossRef] [Green Version]
- Munawer, M.E. Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Min. 2018, 17, 87–96. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, R.; Yang, M. Health economic loss measurement and risk assessment of new cases of coal worker’s pneumoconiosis in China. Saf. Sci. 2020, 122, 104529. [Google Scholar] [CrossRef]
- Roy, D.; Singh, G.; Seo, Y.C. Coal mine fire effects on carcinogenicity and non-carcinogenicity human health risks. Environ. Pollut. 2019, 254, 113091. [Google Scholar] [CrossRef]
- Habib, M.A.; Islam, A.R.M.T.; Bodrud-Doza, M.; Mukta, F.A.; Khan, R.; Siddique, M.A.B.; Techato, K. Simultaneous appraisals of pathway and probable health risk associated with trace metals contamination in groundwater from Barapukuria coal basin, Bangladesh. Chemosphere 2020, 242, 125183. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, M.; Yang, X.; Yang, Y.; Shi, M. Exposure levels and health damage assessment of dust in a coal mine of Shanxi Province, China. Saf. Environ. Prot. 2019, 128, 184–192. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, J.; Wang, H.; Han, X.; Ma, J.; Ma, Y.; Luan, H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2019, 731, 135292. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Fang, J.; Sun, J. Health-related benefits of air quality improvement from coal control in China: Evidence from the Jing-Jin-Ji region. Resour. Conserv. Recycl. 2018, 129, 416–423. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Tian, L. The health impacts of coal use in China. Int. Geol. Rev. 2018, 60, 579–589. [Google Scholar] [CrossRef]
- Teng, M.; Burke, P.J.; Liao, H. The demand for coal among China’s rural households: Estimates of price and income elasticities. Energy Econ. 2019, 80, 928–936. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Lin, L.; Wan, G. Foreign direct investment and cleaner production choice: Evidence from Chinese coal-fired power generating enterprises. J. Clean. Prod. 2019, 212, 766–778. [Google Scholar] [CrossRef]
- Bohlmann, H.R.; Horridge, J.M.; Inglesi-Lotz, R.; Roos, E.L.; Stander, L. Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix. Energy Policy 2019, 128, 830–837. [Google Scholar] [CrossRef]
- Burke, P.J.; Best, R.; Jotzo, F. Closures of coal-fired power stations in Australia: Local unemployment effects. Aust. J. Agric. Resour. Econ. 2019, 63, 142–165. [Google Scholar] [CrossRef] [Green Version]
- Lobao, L.; Zhou, M.; Partridge, M.; Betz, M. Poverty, place, and coal employment across Appalachia and the United States in a new economic era. Rural Sociol. 2016, 81, 343–386. [Google Scholar] [CrossRef]
- Patrizio, P.; LeDuc, S.; Kraxner, F.; Fuss, S.; Kindermann, G.E.; Mesfun, S.; Spokas, K.; Mendoza-Ponce, A.; Mac Dowell, N.; Wetterlund, E.; et al. Reducing US coal emissions can boost employment. Joule 2018, 2, 2633–2648. [Google Scholar] [CrossRef] [Green Version]
- Marcos-Martinez, R.; Measham, T.G.; Fleming-Muñoz, D.A. Economic impacts of early unconventional gas mining: Lessons from the coal seam gas industry in New South Wales, Australia. Energy Policy 2019, 125, 338–346. [Google Scholar] [CrossRef]
- Scholz, D.; Zundel, S.; Müsgens, F. Price and Employment Effects triggered by a German Coal Phase-Out—A Discourse Analysis. In Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 18–20 September 2019. [Google Scholar]
- Winarno, T.; Drebenstedt, C. Indonesia economic output and employment impact of low rank coal utilization: An input output analysis. In XVIII International Coal Preparation Congress; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Figueiredo, R.; Nunes, P.; Meireles, M.; Madaleno, M.; Brito, M.C. Replacing coal-fired power plants by photovoltaics in the Portuguese electricity system. J. Clean. Prod. 2019, 222, 129–142. [Google Scholar] [CrossRef]
- Berk, C.; Cin, K.O. On Energy Dependence, Current Account Deficit and Population in Turkey. Open J. Bus. Manag. 2018, 6, 183. [Google Scholar] [CrossRef] [Green Version]
- Çıraklı, M.E. The Effect Of Utılızatıon of Domestıc Coal Resources on Turkey’s Current Account Balance: An Example of Afsin-Elbistan Lıgnıtes. Master’s Thesis, Hacettepe University, Ankara, Turkey, 2019. [Google Scholar]
- Przychodzen, W.; Przychodzen, J. Determinants of renewable energy production in transition economies: A panel data approach. Energy 2019, 191, 116583. [Google Scholar] [CrossRef]
- Mukherjee, A.; Maity, A.; Chatterjee, S. Enabling a gasification and carbon capture economy in India: An integrated techno-economic analysis. Fuel 2019, 263, 116595. [Google Scholar] [CrossRef]
- Rokhim, R.; Adawiyah, W.; Nasution, R.E.F. The negative impact of coal mining company on health, environment, climate change, economic sustainability and macroeconomic. In Proceedings of the E3S Web of Conferences, Jakarta, Indonesia, 24–25 October 2018. [Google Scholar]
- Fan, J.L.; Wei, S.; Zhang, X.; Yang, L. A comparison of the regional investment benefits of CCS retrofitting of coal-fired power plants and renewable power generation projects in China. Int. J. Greenh. Gas Control 2019, 92, 102858. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, C.; Guo, J.; Ding, Z. ARIMA forecasting of China’s coal consumption, price and investment by 2030. Energy Sources Part B: Econ. Plan. Policy 2018, 13, 190–195. [Google Scholar] [CrossRef]
- Matyjaszek, M.; Wodarski, K.; Krzemień, A.; García-Miranda, C.E.; Sánchez, A.S. Coking coal mining investment: Boosting European Union’s raw materials initiative. Resour. Policy 2018, 57, 88–97. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Xu, C.; Zhao, C.; Liu, Y. Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method. Energy 2019, 176, 623–640. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Zhou, P.; Chang, Y.; Zhou, D.; Pang, M.; Yin, H. Assessing the environmental externalities for biomass-and coal-fired electricity generation in China: A supply chain perspective. J. Environ. Manag. 2019, 246, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Gao, L.; Yan, Y.; Cao, J.; Wang, N.; Wang, T.; Ma, T. Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells. Carbon 2019, 145, 290–296. [Google Scholar] [CrossRef]
- Garðarsdóttir, S.Ó.; Göransson, L.; Normann, F.; Johnsson, F. Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system. Appl. Energy 2018, 209, 277–289. [Google Scholar] [CrossRef]
- Acar, S.; Yeldan, A.E. Environmental impacts of coal subsidies in Turkey: A general equilibrium analysis. Energy Policy 2016, 90, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Zhang, J.; Zhou, Y.; Bai, S.; Huang, L.; Wang, C.; Huang, W. Formation and accumulation of lower Jurassic tight gas sands field in Kekeya area of Tuha Basin, northwestern China. J. Nat. Gas Sci. Eng. 2016, 29, 101–109. [Google Scholar] [CrossRef]
- Yoro, K.O.; Sekoai, P.T. The potential of CO2 capture and storage technology in South Africa’s coal-fired thermal power plants. Environments 2016, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Noble, A.; Luttrell, G.H. A review of state-of-the-art processing operations in coal preparation. Int. J. Min. Sci. Technol. 2015, 25, 511–521. [Google Scholar] [CrossRef]
- Oladejo, J.M.; Adegbite, S.; Pang, C.H.; Liu, H.; Parvez, A.M.; Wu, T. A novel index for the study of synergistic effects during the co-processing of coal and biomass. Appl. Energy 2017, 188, 215–225. [Google Scholar] [CrossRef]
- Kåberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52. [Google Scholar]
- Kost, C.; Mayer, J.N.; Thomsen, J.; Hartmann, N.; Senkpiel, C.; Philipps, S.; Nold, S.; Lude, S.; Saad, N.; Schlegl, T. Levelized cost of electricity renewable energy technologies. Fraunhofer Inst. Sol. Energy Syst. ISE 2013, 144, 1–42. [Google Scholar]
- Zhou, P.; Zhou, P.; Yüksel, S.; Dinçer, H.; Uluer, G.S. Balanced Scorecard-Based Evaluation of Sustainable Energy Investment Projects with IT2 Fuzzy Hybrid Decision Making Approach. Energies 2020, 13, 82. [Google Scholar] [CrossRef] [Green Version]
- Bernal, E.; Castillo, O.; Soria, J.; Valdez, F. Type-2 Fuzzy Logic for Dynamic Parameter Adaptation in the Imperialist Competitive Algorithm. In Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine; Springer: Berlin/Heidelberg, Germany, 2020; pp. 109–118. [Google Scholar]
- Dinçer, H.; Hošková-Mayerová, Š.; Korsakienė, R.; Yüksel, S. IT2-based multidimensional evaluation approach to the signaling: Investors’ priorities for the emerging industries. Soft Comput. 2019, 1–18. [Google Scholar] [CrossRef]
- Qiu, D.; Dinçer, H.; Yüksel, S.; Ubay, G.G. Multi-Faceted Analysis of Systematic Risk-Based Wind Energy Investment Decisions in E7 Economies Using Modified Hybrid Modeling with IT2 Fuzzy Sets. Energies 2020, 13, 1423. [Google Scholar] [CrossRef] [Green Version]
- Çelikbilek, Y.; Adıgüzel Tüylü, A.N. Prioritizing the components of e-learning systems by using fuzzy DEMATEL and ANP. Interact. Learn. Environ. 2019, 1–22. [Google Scholar] [CrossRef]
- Chen, S.C.; Lee, A.H. Performance measurement of SMEs’ employees by fuzzy multi-criteria decision theory. In Proceedings of the 2010 International Symposium on Computer, Communication, Control and Automation (3CA), Tainan, Taiwan, 5–7 May 2010. [Google Scholar]
- Shen, Q.; Song, X.; Mao, F.; Sun, N.; Wen, X.; Wei, W. Carbon reduction potential and cost evaluation of different mitigation approaches in China’s coal to olefin Industry. J. Environ. Sci. 2020, 90, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Huang, Y.; Qin, P. Spatial distribution of coal-fired power plants in China. Environ. Dev. Econ. 2018, 23, 495–515. [Google Scholar] [CrossRef]
Dimensions | Criteria | References |
---|---|---|
Social | Environmental Pollution | Wang et al. [11]; Oliveira et al. [12] |
Health Problems | Habib et al. [21]; Tong et al. [22] | |
Demographic Effects | Chen and Chen [7]; Teng et al. [26] | |
Economic | Employment | Aragon et al. [1]; Bohlmann et al. [28] |
Investment | Fan et al. [41]; Matyjaszek et al. [43] | |
Current Account Balance | Figueiredo et al. [35]; Przychodzen and Przychodzen [38] | |
Efficiency | Lower Cost | Meng et al. [46]; Garðarsdóttir et al. [47] |
Easy Access to Reach | Han et al. [49]; Yoro and Sekoai [50] | |
Easy to Process | Noble and Luttrell [51]; Oladejo et al. [52] |
Linguistic Evaluations | Interval Type 2 Fuzzy Numbers |
---|---|
Very very low (VVL) | ((0, 0.1, 0.1, 0.2, 1, 1), (0.05, 0.1, 0.1, 0.15, 0.9, 0.9)) |
Very low (VL) | ((0.1, 0.2, 0.2, 0.35, 1, 1), (0.15, 0.2, 0.2, 0.3, 0.9, 0.9)) |
Low (L) | ((0.2, 0.35, 0.35, 0.5, 1,1), (0.25, 0.35, 0.35, 0.45, 0.9, 0.9)) |
Medium (M) | ((0.35, 0.5, 0.5, 0.65, 1, 1), (0.4, 0.5, 0.5, 0.6, 0.9, 0.9)) |
High (H) | ((0.5, 0.65, 0.65, 0.8, 1, 1), (0.55, 0.65, 0.65, 0.75, 0.9, 0.9)) |
Very high (VH) | ((0.65, 0.8, 0.8, 0.9, 1, 1), (0.7, 0.8, 0.8, 0.85, 0.9, 0.9)) |
Very very high (VVH) | ((0.8, 0.9, 0.9, 1; 1, 1), (0.85, 0.9, 0.9, 0.95, 0.9, 0.9)) |
Dimension 1 | Dimension 2 | Dimension 3 | |
---|---|---|---|
Dimension 1 | 0.41 | 0.45 | 0.34 |
Dimension 2 | 1.03 | 0.46 | 0.64 |
Dimension 3 | 1.01 | 0.64 | 0.38 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
---|---|---|---|---|---|---|---|---|---|
Criterion 1 | 0.10 | 0.23 | 0.24 | 0.19 | 0.23 | 0.25 | 0.26 | 0.25 | 0.25 |
Criterion 2 | 0.18 | 0.12 | 0.26 | 0.25 | 0.22 | 0.23 | 0.25 | 0.24 | 0.23 |
Criterion 3 | 0.13 | 0.15 | 0.10 | 0.17 | 0.13 | 0.14 | 0.15 | 0.13 | 0.12 |
Criterion 4 | 0.10 | 0.11 | 0.17 | 0.09 | 0.13 | 0.15 | 0.16 | 0.15 | 0.12 |
Criterion 5 | 0.10 | 0.11 | 0.14 | 0.12 | 0.08 | 0.12 | 0.13 | 0.14 | 0.13 |
Criterion 6 | 0.11 | 0.11 | 0.16 | 0.16 | 0.15 | 0.10 | 0.17 | 0.17 | 0.17 |
Criterion 7 | 0.11 | 0.14 | 0.18 | 0.19 | 0.20 | 0.17 | 0.11 | 0.19 | 0.18 |
Criterion 8 | 0.12 | 0.13 | 0.20 | 0.19 | 0.19 | 0.17 | 0.19 | 0.11 | 0.17 |
Criterion 9 | 0.11 | 0.12 | 0.18 | 0.18 | 0.19 | 0.18 | 0.18 | 0.18 | 0.10 |
Dimension 1 | Dimension 2 | Dimension 3 | |
---|---|---|---|
Dimension 1 | 0.34 | 0.48 | 0.50 |
Dimension 2 | 0.38 | 0.22 | 0.32 |
Dimension 3 | 0.29 | 0.30 | 0.19 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
---|---|---|---|---|---|---|---|---|---|
Criterion 1 | 0.18 | 0.32 | 0.34 | 0.26 | 0.29 | 0.30 | 0.25 | 0.26 | 0.26 |
Criterion 2 | 0.40 | 0.21 | 0.40 | 0.30 | 0.32 | 0.29 | 0.33 | 0.30 | 0.30 |
Criterion 3 | 0.41 | 0.47 | 0.26 | 0.44 | 0.39 | 0.41 | 0.42 | 0.44 | 0.43 |
Criterion 4 | 0.29 | 0.36 | 0.38 | 0.25 | 0.38 | 0.39 | 0.34 | 0.35 | 0.33 |
Criterion 5 | 0.34 | 0.31 | 0.30 | 0.36 | 0.25 | 0.37 | 0.35 | 0.35 | 0.34 |
Criterion 6 | 0.37 | 0.33 | 0.32 | 0.39 | 0.37 | 0.23 | 0.31 | 0.30 | 0.32 |
Criterion 7 | 0.34 | 0.34 | 0.38 | 0.37 | 0.33 | 0.33 | 0.24 | 0.40 | 0.38 |
Criterion 8 | 0.33 | 0.34 | 0.33 | 0.34 | 0.35 | 0.33 | 0.40 | 0.24 | 0.40 |
Criterion 9 | 0.33 | 0.32 | 0.29 | 0.29 | 0.32 | 0.34 | 0.37 | 0.36 | 0.22 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
---|---|---|---|---|---|---|---|---|---|
Criterion 1 | 0.06 | 0.11 | 0.11 | 0.12 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 |
Criterion 2 | 0.14 | 0.07 | 0.14 | 0.15 | 0.15 | 0.14 | 0.16 | 0.15 | 0.15 |
Criterion 3 | 0.14 | 0.16 | 0.09 | 0.21 | 0.19 | 0.20 | 0.21 | 0.22 | 0.22 |
Criterion 4 | 0.11 | 0.13 | 0.14 | 0.05 | 0.08 | 0.08 | 0.11 | 0.11 | 0.11 |
Criterion 5 | 0.13 | 0.12 | 0.11 | 0.08 | 0.05 | 0.08 | 0.11 | 0.11 | 0.11 |
Criterion 6 | 0.14 | 0.12 | 0.12 | 0.09 | 0.08 | 0.05 | 0.10 | 0.10 | 0.10 |
Criterion 7 | 0.10 | 0.10 | 0.11 | 0.11 | 0.10 | 0.10 | 0.04 | 0.07 | 0.07 |
Criterion 8 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.07 | 0.04 | 0.07 |
Criterion 9 | 0.09 | 0.09 | 0.08 | 0.09 | 0.10 | 0.10 | 0.07 | 0.07 | 0.04 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
---|---|---|---|---|---|---|---|---|---|
Criterion 1 | 0.118 | 0.118 | 0.118 | 0.118 | 0.118 | 0.118 | 0.118 | 0.118 | 0.118 |
Criterion 2 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 |
Criterion 3 | 0.172 | 0.172 | 0.172 | 0.172 | 0.172 | 0.172 | 0.172 | 0.172 | 0.172 |
Criterion 4 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 |
Criterion 5 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 |
Criterion 6 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 | 0.102 |
Criterion 7 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 |
Criterion 8 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 |
Criterion 9 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Dinçer, H.; Ersin, İ.; Yüksel, S. IT2 Fuzzy-Based Multidimensional Evaluation of Coal Energy for Sustainable Economic Development. Energies 2020, 13, 2453. https://doi.org/10.3390/en13102453
Du L, Dinçer H, Ersin İ, Yüksel S. IT2 Fuzzy-Based Multidimensional Evaluation of Coal Energy for Sustainable Economic Development. Energies. 2020; 13(10):2453. https://doi.org/10.3390/en13102453
Chicago/Turabian StyleDu, Ling, Hasan Dinçer, İrfan Ersin, and Serhat Yüksel. 2020. "IT2 Fuzzy-Based Multidimensional Evaluation of Coal Energy for Sustainable Economic Development" Energies 13, no. 10: 2453. https://doi.org/10.3390/en13102453
APA StyleDu, L., Dinçer, H., Ersin, İ., & Yüksel, S. (2020). IT2 Fuzzy-Based Multidimensional Evaluation of Coal Energy for Sustainable Economic Development. Energies, 13(10), 2453. https://doi.org/10.3390/en13102453