Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating
Abstract
:1. Introduction
2. Methods
2.1. System Description
2.2. Mathematical Model
2.3. Initial and Boundary Conditions
2.4. Numerical Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, J.; Cao, M.; Liu, P. Development and utilization of geothermal energy in China: Current practices and future strategies. Renew. Energy 2018, 125, 401–412. [Google Scholar] [CrossRef]
- Moya, D.; Aldásd, C.; Kaparajue, P. Geothermal energy: Power plant technology and direct heat applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Su, C.; Madani, H.; Palm, B. Heating solutions for residential buildings in China: Current status and future outlook. Energy Convers. Manag. 2018, 177, 493–510. [Google Scholar] [CrossRef]
- Vanderzwaan, B.; Longaa, F.D. Integrated assessment projections for global geothermal energy use. Geothermics 2019, 82, 203–211. [Google Scholar] [CrossRef]
- Rubio-Maya, C.; Ambríz Díaz, V.M.; Pastor, M.E.; Belman-Flores, J.M. Cascade utilization of low and medium enthalpy geothermal resources—A review. Renew. Sust. Energy Rev. 2015, 52, 689–716. [Google Scholar] [CrossRef]
- Keçebas, A. Exergoenvironmental analysis for a geothermal district heating system: An application. Energy 2016, 94, 391–400. [Google Scholar] [CrossRef]
- Pandey, S.N.; Vikram, V.; Chaudhuri, A. Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review. Earth-Sci. Rev. 2018, 185, 157–1169. [Google Scholar] [CrossRef]
- Asaia, P.; Panja, P.; Velasco, R. Fluid flow distribution in fractures for a doublet system in Enhanced Geothermal Systems (EGS). Geothermics 2018, 75, 171–179. [Google Scholar] [CrossRef]
- Cheng, Q.L.; Wang, X.N.; Ghassemi, A. Numerical simulation of reservoir stimulation with reference to the Newberry EGS. Geothermics 2019, 77, 327–343. [Google Scholar] [CrossRef]
- Bagalkot, N.; Kumar, G. Thermal front propagation in variable aperture fracture–matrix system: A numerical study. Sadhana 2015, 40, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Olasolo, P.; Juárez, M.C.; Morales, M.P. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Bagalkot, N.; Zare, A.; Kumar, G. Influence of fracture heterogeneity using linear congruential generator (lcg) on the thermal front propagation in a single geothermal fracture-rock matrix system. Energies 2018, 11, 916. [Google Scholar] [CrossRef] [Green Version]
- McClure, M.W.; Horne, R.N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int. J. Rock Mech. Min. Sci. 2014, 72, 242–260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qu, Z.Q.; Guo, T.K. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress. Renew. Energy 2019, 143, 855–871. [Google Scholar] [CrossRef]
- Alimonti, C.; Soldo, E. Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger. Renew. Energy 2016, 86, 292–301. [Google Scholar] [CrossRef]
- Gharibi, S.; Mortezazadeh, E.; Bodi, S.J.H.A.; Vatani, A. Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger. Energy 2018, 153, 554–567. [Google Scholar] [CrossRef]
- Cheng, W.L.; Liu, J.; Nian, Y.L. Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs. Energy 2016, 109, 537–545. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Pourarshad, M.; Jalilinasrabady, S.; Yousefi, H. Numerical simulation of power production from abandoned oil wells in Ahwaz oil field in southern Iran. Geothermics 2015, 55, 16–23. [Google Scholar] [CrossRef]
- Fang, L.; Diao, N.R.; Shao, Z.K. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers. Energy Build. 2018, 167, 79–88. [Google Scholar] [CrossRef]
- Gordon, D.; Bolisetti, T.; Ting, D.S.K.; Reitsma, S. Short-term fluid temperature variations in either a coaxial or U-tube borehole heat exchanger. Geothermics 2017, 67, 29–39. [Google Scholar] [CrossRef]
- Bu, X.B.; Ran, Y.M.; Zhang, D.D. Experimental and simulation studies of geothermal single well for building heating. Renew. Energy 2019, 143, 1902–1909. [Google Scholar] [CrossRef]
- Bu, X.B.; Jiang, K.Q.; Li, H.S. Performance of geothermal single well for intermittent heating. Energy 2019, 186, 115858. [Google Scholar] [CrossRef]
- Li, H.S.; Ma, W.B.; Lian, Y.Y.; Wang, X.L. Estimating daily global solar radiation by day of year in China. Appl. Energy 2010, 87, 3011–3017. [Google Scholar] [CrossRef]
- Ge, T.S.; Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Chen, X.M.; Ma, T.; Wu, X.N.; Sun, X.L.; Chen, J.F.; et al. Solar heating and cooling: Present and future developmeng. Renew. Energy 2018, 126, 1126–1140. [Google Scholar] [CrossRef]
- Li, P.C.; Li, J.; Pei, G.; Munir, A.; Ji, J. A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas. Sol. Energy 2016, 127, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Wight, N.M.; Bennett, N.S. Geothermal energy from abandoned oil and gas wells using water in combination with a closed wellbore. Appl. Eng. 2015, 89, 908–915. [Google Scholar] [CrossRef]
- Caulk, R.A.; Tomac, I. Reuse of abandoned oil and gas wells for geothermal energy production. Renew. Energy 2017, 112, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Nian, Y.L.; Cheng, W.L. Insights into geothermal utilization of abandoned oil and gas wells. Renew. Sust. Energy Rev. 2018, 87, 44–60. [Google Scholar] [CrossRef]
- Song, X.Z.; Wang, G.S.; Shi, Y. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system. Energy 2018, 164, 1298–1310. [Google Scholar] [CrossRef]
- Cao, W.J.; Huang, W.B.; Jiang, F.M. A novel thermal-hydraulic-mechanical model for the enhanced geothermal system heat extraction. Int. J. Heat Mass Transf. 2016, 100, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.B.; Cao, W.J.; Jiang, F.M. A novel single-well geothermal system for hot dry rock geothermal energy exploitation. Energy 2018, 162, 630–644. [Google Scholar] [CrossRef]
- Huang, W.B.; Cao, W.J.; Jiang, F.M. Heat extraction performance of EGS with heterogeneous reservoir: A numerical evaluation. Int. J. Heat Mass Transf. 2017, 108, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.M.; Luo, L.; Chen, J.L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. Int. Commun. Heat Mass Transf. 2013, 41, 57–62. [Google Scholar] [CrossRef]
- Zhang, X.M.; Ren, Z.P.; Mei, F.M. Heat Transfer, 4th ed.; China Construction Industry Press: Beijing, China, 2001. [Google Scholar]
- Li, R.X. Basis of Finite Volume Method, 2nd ed.; National Defense Industry Press: Beijing, China, 2008. [Google Scholar]
- Tao, W.Q. Numerical Heat Transfer, 2nd ed.; Xi’an Jiao Tong University Press: Xi’an, China, 2001. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Bu, X. Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating. Energies 2020, 13, 2473. https://doi.org/10.3390/en13102473
He Y, Bu X. Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating. Energies. 2020; 13(10):2473. https://doi.org/10.3390/en13102473
Chicago/Turabian StyleHe, Yujiang, and Xianbiao Bu. 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating" Energies 13, no. 10: 2473. https://doi.org/10.3390/en13102473
APA StyleHe, Y., & Bu, X. (2020). Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating. Energies, 13(10), 2473. https://doi.org/10.3390/en13102473