Electricity Consumption Forecast Model Using Household Income: Case Study in Tanzania
Abstract
:1. Introduction
1.1. Overview
1.2. Literature Review
2. Modelling Electricity Consumption per Household by Income
2.1. Appliance Ownership Model
2.2. Electricity Consumption per Household Estimation Model
3. Case Study on Mainland Tanzania
3.1. Income Data
3.2. Upper Bound of Electricity Consumption
- (1)
- Allocate all income except food expenditure to pay for the electricity bill.
- (2)
- For the equation for calculating food expenditure, , which is quite small. Where income is low, many actual values deviate above the value obtained from the equation and, conversely, actual values after middle income often fall below.
- (3)
- It is converted to electricity consumption using the electricity cost of TANESCO.
3.3. Relationship between Household Income and Number of Household Appliances
3.4. Relationship between Household Income and Electricity Consumption
Prediction of Household Electricity Consumption Using the Model
3.5. Model Evaluation
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- IEA. SDG7: Data and Projections, Access to Electricity. Available online: https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed on 15 May 2020).
- Bazilian, M.; Nussbaumer, P.; Rogner, H.H.; Brew-Hammond, A.; Foster, V.; Pachauri, S.; Williams, E.; Howells, M.; Niyongabo, P.; Musaba, L.; et al. Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. Util. Policy 2012, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.L.; Souza, R.C.; Oliveira, F.L.C.; Lourenço, P.M.; Fagundes, W.D.C. Forecast of long-term electricity consumption of the industrial sub-sector of pulp and paper in Brazil using a bottom-up approach. Procedia Comput. Sci. 2015, 55, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Debnath, K.B.; Mourshed, M.; Chew, S.P.K. Modelling and forecasting energy demand in rural households of Bangladesh. Energy Procedia 2015, 75, 2731–2737. [Google Scholar] [CrossRef] [Green Version]
- Amarawickrama, H.A.; Hunt, L.C. Electricity demand for Sri Lanka: A time series analysis. Energy 2008, 33, 724–739. [Google Scholar] [CrossRef] [Green Version]
- Azadeh, A.; Ghaderi, S.; Sohrabkhani, S. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conv. Manag. 2008, 49, 2272–2278. [Google Scholar] [CrossRef]
- Oğcu, G.; Demirel, O.F.; Zaim, S. Forecasting electricity consumption with neural networks and support vector regression. Procedia Soc. Behav. Sci. 2012, 58, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Inglesi, R. Aggregate electricity demand in South Africa: Conditional forecasts to 2030. Appl. Energy 2010, 87, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Morales-Acevedo, A. Forecasting future energy demand: Electrical energy in Mexico as an example case. Energy Procedia 2014, 57, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Rosnes, O.; Vennemo, H. The cost of providing electricity to Africa. Energy Econ. 2012, 34, 1318–1328. [Google Scholar] [CrossRef]
- McQueen, D.H.; Hyland, P.R.; Watson, S.J. Monte Carlo simulation of residential electricity demand for forecasting maximum demand on distribution networks. IEEE Trans. Power Syst. 2004, 19, 1685–1689. [Google Scholar] [CrossRef]
- McNeil, M.A.; Letschert, V.E. Forecasting Electricity Demand in Developing Countries: A Study of Household Income and Appliance Ownership; European Council for an Energy Efficient Economy-2005 Summer Study, LBNL-58283; European Council: Mandelieu, France, 2005; Volume 85, p. 90. [Google Scholar]
- Daioglou, V.; Van Ruijven, B.J.; Van Vuuren, D.P. Model projections for household energy use in developing countries. Energy 2012, 37, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Blodgett, C.; Dauenhauer, P.; Louie, H.; Kickham, L. Accuracy of energy-use surveys in predicting rural minigrid user consumption. Energy Sustain. Dev. 2017, 41, 88–105. [Google Scholar] [CrossRef] [Green Version]
- Hartvigsson, E.; Ahlgren, E.O. Comparison of load profiles in a minigrid: Assessment of performance metrics using measured and interview-based data. Energy Sustain. Dev. 2018, 43, 186–195. [Google Scholar] [CrossRef]
- UN. The Least Developed Countries Report 2019. United Nations, 2019. Available online: https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=2571 (accessed on 15 May 2020).
- WorldBank. The World Bank Home Page. Available online: http://data.worldbank.org/country/tanzania (accessed on 14 May 2020).
- NBS. Statistical Abstract 2013. National Bureau of Statistics Ministry of Finance, 2014. Available online: https://www.nbs.go.tz/index.php/en/tanzania-statistical-abstract (accessed on 15 May 2020).
- NPS. Tanzania National Panel Survey Year 3: 2012–2013. The World Bank, 2013. Available online: https://microdata.worldbank.org/index.php/catalog/2252 (accessed on 15 May 2020).
- Tanesco. Power System Master Plan 2012 Update. Tanzania Electric Supply Company Limited, 2013. Available online: http://www.tanesco.co.tz/index.php/investments/investment-report/22-power-system-master-plan-2012-update (accessed on 14 May 2020).
- Kassim, M.F. Research on Estimation Methods for Household Energy Demand in Developing Countries—The Case of Tanzania. Ph.D. Thesis, Department of Architecture, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan, 2013. [Google Scholar]
- Alibaba. Alibaba.com. Available online: https://www.alibaba.com/ (accessed on 14 May 2020).
- CommonsMath. Commons Math: The Apache Commons Mathematics Library. Available online: http://commons.apache.org/proper/commons-math/ (accessed on 14 May 2020).
- McDonald, J.B.; Ransom, M. The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality. In Modeling Income Distributions and Lorenz Curves; Chotikapanich, D., Ed.; Springer: New York, NY, USA, 2008; pp. 147–166. [Google Scholar] [CrossRef]
- Chotikapanich, D.; Griffiths, W.E.; Hajargasht, G.; Karunarathne, W.; Rao, D. Using the GB2 income distribution. Econometrics 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- GB2, P. GB2: Generalized Beta Distribution of the Second Kind: Properties, Likelihood, Estimation. Available online: https://cran.r-project.org/web/packages/GB2/index.html (accessed on 4 May 2020).
a | ||||
---|---|---|---|---|
Complete music system | 0.81 | 0.3 | 2.88 | 0.00031 |
Computer | 0.99 | 1.5 | 4.16 | 0.00021 |
Dish antenna decoder | 0.83 | 1 | 1.91 | 0.00019 |
Fan/air conditioner | 0.83 | 1.4 | 1.93 | 0.00027 |
Iron (charcoal or electric) | 0.85 | 1.3 | 1.43 | 0.00048 |
Radio and radio cassette | 0.26 | 1.2 | 0.70 | 0.00029 |
Refrigerator or freezer | 0.94 | 1.2 | 2.26 | 0.00027 |
Sewing machine | 0.52 | 0.2 | 5.18 | 0.019 |
Telephone (mobile) | 0.77 | 5.5 | 1.47 | 0.00022 |
Television | 0.75 | 1.6 | 1.31 | 0.00033 |
Video DVD | 0.81 | 1.3 | 1.34 | 0.00040 |
Washing machine | 1 | 1.43 | 0.00048 | |
Water heater | 1 | 2.26 | 0.00027 | |
Light | 13 | 1.47 | 0.00022 |
Standard | Heavy User | |||||||
---|---|---|---|---|---|---|---|---|
Rated Output (W) | Used Hours (h/day) | Used Hours (h/year) | Consumed Electricity (kWh/year) | Rated Output (W) | Used hours (h/day) | Used Hours (h/year) | Consumed Electricity (kWh/year) | |
Complete music system | 30 | 1 | 365 | 10.95 | 150 | 8 | 2920 | 438 |
Computer | 50 | 4.32 | 1576.8 | 78.84 | 100 | 4.32 | 1576.8 | 157.68 |
Dish antenna decoder | 1 | 24 | 8760 | 8.76 | 1.5 | 24 | 8760 | 13.14 |
Fan/Air conditioner | 574 | 2.94 | 1071.79 | 615.20 | 1148 | 5.87 | 2143.57 | 2460.82 |
Iron (charcoal or electric) | 908 | 0.51 | 186.15 | 169.02 | 1362 | 1 | 365 | 497.13 |
Radio and radio cassette | 10 | 1 | 365 | 3.65 | 100 | 8 | 2920 | 292 |
Refrigerator or freezer | 200 | 8.11 | 2960.15 | 592.03 | 1200 | 8.11 | 2960.15 | 3552.18 |
Sewing machine | 30 | 0.071 | 26.07 | 0.78 | 70 | 0.071 | 26.07 | 1.83 |
Telephone (mobile) | 2.5 | 1 | 365 | 0.91 | 5 | 4 | 1460 | 7.3 |
Television | 55 | 7.03 | 2565.95 | 141.13 | 82.5 | 7.03 | 2565.95 | 211.69 |
Video DVD | 20 | 1 | 365 | 7.3 | 50 | 8 | 2920 | 146 |
Washing machine | 490 | 1.74 | 635.1 | 311.20 | 735 | 1.74 | 635.1 | 466.80 |
Water heater | 1535 | 0.071 | 25.84 | 39.66 | 2302.5 | 0.071 | 25.84 | 59.50 |
Light | 60 | 7.58 | 2766.7 | 166 | 90 | 16 | 5840 | 525.6 |
Region | a | b | p | q |
---|---|---|---|---|
Arusha | 6.9 | 2008.72 | 0.16 | 0.14 |
Dar es Salaam | 2.41 | 2035.67 | 0.65 | 0.53 |
Dodoma | 6.88 | 604.16 | 3.18 | 0.13 |
Iringa | 1.54 | 3199.26 | 0.67 | 1.03 |
Kagera | 2.08 | 6026.8 | 0.42 | 2.58 |
Kigoma | 0.39 | 804.31 | 8.57 | 7.39 |
Kilimanjaro | 3.31 | 900.05 | 0.31 | 0.2 |
Lindi | 0.95 | 4015.67 | 0.71 | 1.16 |
Manyara | 4.35 | 191.31 | 5.81 | 0.18 |
Mara | 1.06 | 6094.13 | 1.3 | 3.56 |
Morogoro | 6.32 | 565.1 | 0.26 | 0.1 |
Mbeya | 6.09 | 1187.47 | 0.11 | 0.1 |
Mtwara | 0.39 | 810.47 | 11.18 | 7.86 |
Mwnza | 3.78 | 1572.5 | 0.4 | 0.26 |
Pwani | 0.98 | 5787.98 | 2.28 | 7.29 |
Rukwa | 6.38 | 1462.84 | 0.19 | 0.47 |
Ruvuma | 0.47 | 240.81 | 10.99 | 3.94 |
Singida | 0.78 | 5681.56 | 3.5 | 6.54 |
Shinyanga | 0.85 | 234.75 | 5.12 | 1.27 |
Tabora | 1.16 | 829.08 | 1.41 | 0.94 |
Tanga | 3.15 | 4265.33 | 0.26 | 4.42 |
Region | D1+T1 Consumption [kWh] [20] | Number of Customers [hh] [20] | Predicted Electricity Consumption [kWh] | Relative Error |
---|---|---|---|---|
Arusha | 152,296,238 | 60,936 | 135,039,661 | −0.11 |
Dar es Salaam | 971,897,812 | 285,139 | 642,595,899 | −0.34 |
Dodoma | 71,452,940 | 31,207 | 63,121,380 | −0.12 |
Iringa | 40,356,479 | 34,592 | 75,127,329 | 0.86 |
Kagera | 30,830,559 | 17,646 | 32,589,882 | 0.06 |
Kigoma | 8,641,101 | 9291 | 16,784,770 | 0.94 |
Kilimanjaro | 100,271,313 | 70,987 | 144,100,095 | 0.44 |
Lindi | 12,825,731 | 6575 | 14,958,498 | 0.17 |
Manyara | 21,909,654 | 7443 | 12,170,727 | −0.44 |
Mara | 30,758,998 | 16,222 | 33,165,221 | 0.08 |
Morogoro | 93,716,113 | 43,866 | 82,165,218 | −0.12 |
Mbeya | 93,822,410 | 52,219 | 104,293,895 | 0.11 |
Mtwara | 23,752,924 | 10,406 | 22,865,148 | −0.04 |
Mwnza | 108,620,452 | 49,313 | 108,074,980 | −0.01 |
Pwani | 41,142,762 | 29,919 | 52,312,584 | 0.27 |
Rukwa | 16,042,885 | 8566 | 12,011,898 | −0.25 |
Ruvuma | 17,635,828 | 12,774 | 29,964,785 | 0.70 |
Singida | 25,342,782 | 12,618 | 27,582,409 | 0.09 |
Shinyanga | 47,541,884 | 22,088 | 45,610,877 | −0.04 |
Tabora | 33,986,978 | 19,404 | 37,952,329 | 0.12 |
Tanga | 82,259,509 | 43,803 | 62,825,612 | −0.24 |
all | 2,025,105,352 | 845,014 | 1,755,313,196 | −0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibano, K.; Mogi, G. Electricity Consumption Forecast Model Using Household Income: Case Study in Tanzania. Energies 2020, 13, 2497. https://doi.org/10.3390/en13102497
Shibano K, Mogi G. Electricity Consumption Forecast Model Using Household Income: Case Study in Tanzania. Energies. 2020; 13(10):2497. https://doi.org/10.3390/en13102497
Chicago/Turabian StyleShibano, Kyohei, and Gento Mogi. 2020. "Electricity Consumption Forecast Model Using Household Income: Case Study in Tanzania" Energies 13, no. 10: 2497. https://doi.org/10.3390/en13102497
APA StyleShibano, K., & Mogi, G. (2020). Electricity Consumption Forecast Model Using Household Income: Case Study in Tanzania. Energies, 13(10), 2497. https://doi.org/10.3390/en13102497