Numerical Simulation for Flow of Rolling Piston Type of Rotary Compressor
Abstract
:1. Introduction
2. Numerical Method
3. Model and Boundary Conditions
3.1. Meshes
3.2. Reed Valve Motion
3.3. Measured Point
3.4. Grid Independence
3.5. Validation
3.5.1. Test Rig
3.5.2. Validation Results
4. Results and Discussion
4.1. Basic Type
4.2. Flow Phenomena
4.3. Volume Effect
4.4. Mass of Reed Valve Effect
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, S.; Xia, S.; Kang, X.; Zhou, P.; Liu, Q.; Hu, Y. Investigation of refrigerant flow simulation and experiment of rolling piston. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 12–15 July 2010. [Google Scholar]
- Ba, D.-C.; Deng, W.-J.; Che, S.-G.; Li, Y.; Guo, H.-X.; Li, N.; Yue, X.-J. Gas dynamics analysis of a rotary compressor based on CFD. Appl. Therm. Eng. 2016, 99, 1263–1269. [Google Scholar] [CrossRef]
- Ishii, N.; Fukushima, M.; Yamarnura, M.; Fujiwara, S.; Kakita, S. Optimum combination of dimensions for high mechanical efficiency of a rolling-piston rotary compressor. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 17–20 July 1990. [Google Scholar]
- Noh, K.-Y.; Min, B.-C.; Song, S.-J.; Yang, J.-S.; Choi, G.-M.; Kim, D.-J. Compressor efficiency with cylinder slenderness ratio of rotary compressor at various compression ratios. Int. J. Refrig. 2016, 70, 42–56. [Google Scholar] [CrossRef]
- Bolloju, S.R.K.; Tiruveedhula, V.; Munnangi, N.; Vaddadi, K.R.; Reddy, M.P. Efficiency improvement of rotary compressor by improving the discharge path through simulation. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Tan, Q.; Liu, Z.; Cheng, J.; Feng, Q. Effective flow and force areas of discharge valve in a rotary compressor. In Proceedings of the International Compressor Engineering, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Brancher, R.D.; Deschamps, C.J. Modeling of rolling-piston compressors with special attention to the suction and discharge processes. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Prater Jr, G.; Hnat, W.P. Optical measurement of discharge valve modal parameters for a rolling piston refrigeration compressor. Measurement 2003, 33, 75–84. [Google Scholar] [CrossRef]
- Liu, C.H.; Geng, W. Research on suction performance of two-cylinder rolling piston type rotary compressors based on CFD simulation. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 12–15 July 2004. [Google Scholar]
- Cai, D.; He, G.; Yokoyama, T.; Tian, Q.; Yang, X.; Pan, J. Simulation and comparison of leakage characteristics of R290 in rolling piston type rotary compressor. Int. J. Refrig. 2015, 53, 42–54. [Google Scholar] [CrossRef]
- Ooi, K.T. Design optimization of a rolling piston compressor for refrigerators. Appl. Therm. Eng. 2005, 25, 813–829. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, USA. 2018. Available online: https://pages.nist.gov/REFPROP-docs/ (accessed on 7 April 2020).
Item No. | Description | Function |
---|---|---|
1 | Compressor | Tested model |
2 | Accumulator | Separate vapor and liquid phase of refrigerant |
3 | Thermocouple | Monitor compressor for preventing from overheat |
4 | Wire of power supply | Provide power for motor |
5 | Magnetic pickup tachometer | Detect rotational speed of shaft |
6 | Returning pipe (from evaporator) | Connect evaporator to accumulator |
7 | Resistance Temperature Detector | Detect temperature of vapor from evaporator |
8 | Discharge pipe (to the condenser) | Connect compressor outlet to condenser |
9 | Resistance Temperature Detector | Detect discharged vapor temperature |
10 | Condenser, evaporator | Heat exchange (inside a wall of the test rig) |
Parameters | Accuracy | Sensor Type |
---|---|---|
Temperature | °C | Resistance thermometers |
Pressure | Pressure transducer | |
Liquid mass flow rate | Turbine flow meter | |
Gas mass flow rate | Turbine flow meter | |
Input power | Rotary torque sensor, voltage, and current meters | |
Shaft rotational speed | Magnetic pickup tachometer |
Physical Properties | Model 1 (Compression Volume 5.2 cm3) | Model 2 (Compression Volume 4.9 cm3) | ||||
---|---|---|---|---|---|---|
Experiment | Simulation | Deviation (%) | Experiment | Simulation | Deviation (%) | |
Working fluid | R410a | R410a | R410a | R410a | ||
Inlet pressure (abs Mpa) | 0.995 | 0.911925 | −8.3 | 1.149 | 1.149 | 0 |
Inlet temperature (°C) | 35 | 35 | 24.0 | 24.0 | 0 | |
Rotational speed of compression (rpm) | 3450 | 3450 | 3450 | 3450 | 3450 | |
Outlet pressure (abs Mpa) | 3.348 | 3.242 | −3.1 | 2.721 | 2.721 | 0 |
Outlet temperature (°C) | 110.06 | 109 | 1.8 | 75.75 | 75 | 0.9 |
Mass flow rate (kg/hr) | 30.43 | 30.2731 | 0.515 | 37.48 | 37.5871 | 0.26 |
The enthalpy of refrigerant at inlet (kJ/kg) | 453.17 | 456.202 | −0.669 | 438.250 | 440.033 | 0.41 |
The enthalpy of refrigerant at outlet (kJ/kg) | 504.65 | 504.787 | −0.027 | 470.155 | 470.044 | −0.024 |
Mean work rate done on refrigerant (Watt) | 435.1 | 424.855 | 2.35 | 332.166 | 332.948 | 0.235 |
Input power | 617 | 610.138 | 1.112 | 525 | 502.93 | 4.2 |
Overall efficiency | 70.89 | 69.632 | 1.774 | 63.3 | 66.2 | 4.7 |
Type | 2210-45 | +5% | +10% | +15% | −5% | −10% | −15% |
---|---|---|---|---|---|---|---|
Volume (mm3) | 5049 | 5301 | 5553 | 5806 | 4796 | 4544 | 4291 |
Piston radius (mm) | 16.45 | 16.311 | 16.171 | 16.029 | 16.588 | 16.725 | 16.861 |
Eccentricity (mm) | 2.567 | 2.706 | 2.847 | 2.988 | 2.429 | 2.292 | 2.156 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, L.-C.; Wong, G.-W.; Lu, P.-J.; Hsu, F.-S.; Chen, Y.-C. Numerical Simulation for Flow of Rolling Piston Type of Rotary Compressor. Energies 2020, 13, 2526. https://doi.org/10.3390/en13102526
Hsu L-C, Wong G-W, Lu P-J, Hsu F-S, Chen Y-C. Numerical Simulation for Flow of Rolling Piston Type of Rotary Compressor. Energies. 2020; 13(10):2526. https://doi.org/10.3390/en13102526
Chicago/Turabian StyleHsu, Li-Chieh, Guo-Wei Wong, Po-Jui Lu, Fu-Shun Hsu, and Ying-Chien Chen. 2020. "Numerical Simulation for Flow of Rolling Piston Type of Rotary Compressor" Energies 13, no. 10: 2526. https://doi.org/10.3390/en13102526
APA StyleHsu, L. -C., Wong, G. -W., Lu, P. -J., Hsu, F. -S., & Chen, Y. -C. (2020). Numerical Simulation for Flow of Rolling Piston Type of Rotary Compressor. Energies, 13(10), 2526. https://doi.org/10.3390/en13102526