Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Energy Management Strategy
2.1. Problem Formulation
2.2. Control Strategy
2.3. Optimization Algorithm
3. Impacts of Battery Aging
3.1. Modeling
3.2. Exprimental Study
3.3. Mathematical Expression
- Step 1: Test data are divided into many small data segments ranging from SOC = 0.1 to SOC = 1.0; GA is implemented to optimize the model parameters at each data segment. The programming of GA has been introduced in Reference [28], so it is not reproduced here for brevity. Optimization objective is to find the best parameters ρ(j)= [Uoc(j), R0(j), Rp(j), τ(j)] to minimize the model error at each segment j. The results are shown in Figure 4.
- Step 2: Mathematical expression. From the results, we found Uoc and R0 have clear correspondences with SOC under each SOH condition, but Rp and τ show fluctuate with some certain value. Thus, Uoc and R0 at the entire SOC range are further fitted by the following continuous polynomials while Rp and τ are replaced by their mean value
4. Results and Analysis
4.1. The Impacts of Battery Aging
4.2. Energy Consumption
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khayyam, H. A Bab-Hadiashar. Adaptive intelligent energy management system of plug-in hybrid electric vehicle. Energy 2014, 69, 319–335. [Google Scholar] [CrossRef]
- Karplus, V.; Paltsev, S.; Reilly, J. Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis. Transp. Res. Part A Policy Pract. 2010, 44, 620–641. [Google Scholar] [CrossRef] [Green Version]
- Weiller, C. Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States. Energy Policy 2011, 39, 3766–3778. [Google Scholar] [CrossRef]
- Peterson, S.; Apt, J.; Whitacre, J. Lithium-ion battery aging resulting from realistic vehicle and vehicle-to-grid utilization. J Power Sources. J. Power Sources 2010, 195, 2385–2392. [Google Scholar] [CrossRef]
- Dubarry, M.; Liaw, B.; Chen, M. Identifying battery aging mechanisms in large format Li ion cells. J Power Sources 2011, 196, 3420–3425. [Google Scholar] [CrossRef]
- Vetter, J.; Novák, P.; Wagner, M.; Veit, C.; Moller, K.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Kim, I. A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer. IEEE Trans. Power Electron. 2010, 25, 1013–1022. [Google Scholar]
- Zhang, Y.; Xiong, R.; He, H.; Michael, P. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Shams-Zahraei, M.; Kouzani, A.; Kutter, S.; Bäker, B. Integrated thermal and energy management of plug-in hybrid electric vehicles. J. Power Sources 2012, 216, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.; Ouyang, M.; Xu, L.; Wang, H. Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles. Appl. Energy 2015, 115, 174–189. [Google Scholar] [CrossRef]
- Li, L.; You, S.; Yang, C.; Yan, B.; Song, J.; Chen, Z. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses. Appl. Energy 2016, 162, 868–879. [Google Scholar] [CrossRef]
- Wirasingha, S.; Emadi, A. Classification and review of control strategies for plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 2011, 60, 111–122. [Google Scholar] [CrossRef]
- Peng, J.; He, H.; Xiong, R. Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming. Appl. Energy 2017, 185, 1633–1643. [Google Scholar] [CrossRef]
- Gao, Y.; Ehsani, M. Design and control methodology of plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 2010, 57, 633–640. [Google Scholar]
- Schouten, N.; Salman, M.; Kheir, N. Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Eng. Pract. 2003, 11, 171–177. [Google Scholar] [CrossRef]
- Li, S.; Sharkh, S.; Walsh, F.; Zhang, C. Energy and battery management of a plug-in series hybrid electric vehicle using fuzzy logic. IEEE Trans. Veh. Technol. 2011, 60, 3571–3585. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, R. Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming. Appl. Energy 2015, 155, 68–78. [Google Scholar] [CrossRef]
- Patil, R.; Filipi, Z.; Fathy, H. Comparison of supervisory control strategies for series plug-in hybrid electric vehicle powertrains through dynamic programming. IEEE Trans. Control Syst. Technol. 2014, 22, 502–509. [Google Scholar] [CrossRef]
- Chen, S.; Hung, Y.; Wu, C.; Huang, S. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization. Appl. Energy 2015, 160, 132–145. [Google Scholar] [CrossRef]
- Larsson, V.; Johannesson, L.; Egardt, B. Analytic Solutions to the Dynamic Programming sub-problem in Hybrid Vehicle Energy Management. IEEE Trans. Veh. Technol. 2015, 64, 1458–1467. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Y.; Tsai, H. Design and analysis of energy management strategy for range extended electric vehicle using dynamic programming. Appl. Energy 2014, 113, 1764–1774. [Google Scholar] [CrossRef]
- Nüesch, T.; Cerofolini, A.; Mancini, G.; Cavina, N.; Onder, C.; Guzzella, L. Equivalent consumption minimization strategy for the control of real driving NOx emissions of a diesel hybrid electric vehicle. Energies 2014, 7, 3148–3178. [Google Scholar] [CrossRef] [Green Version]
- Geng, B.; Mills, J.; Sun, D. Energy management control of microturbine-powered plug-in hybrid electric vehicles using the telemetry equivalent consumption minimization strategy. IEEE Trans. Veh. Technol. 2011, 60, 4238–4248. [Google Scholar] [CrossRef]
- Sezer, V.; Gokasan, M.; Bogosyan, S. A novel ECMS and combined cost map approach for high-efficiency series hybrid electric vehicles. IEEE Trans. Veh. Technol. 2011, 60, 3557–3570. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, R.; Shen, W. A lithium-ion battery-in-the-loop approach to test and validate multi-scale dual H infinity filters for state of charge and capacity estimation. IEEE Trans. Power Electron. 2017. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, R.; Cao, J. Particle swarm optimization-based optimal energy management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy 2016, 96, 197–208. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Yang, Y.; Lv, M. Online estimation of state of power for lithium-ion batteries in electric vehicles using genetic algorithm. IEEE ACCESS. 2018, 6, 20868–20880. [Google Scholar] [CrossRef]
- Padmarajan, B.; Mcgordon, A.; Jennings, P. Blended rule based energy management for PHEV: System Structure and Strategy. IEEE Trans. Veh. Technol. 2016, 65, 8757–8762. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, F.; He, H.; Nguyen, T. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy 2013, 63, 295–308. [Google Scholar] [CrossRef]
- Ali, M.; Zafar, A.; Nengroo, S.; Hussain, S.; Hussain, S.; Alvi, M.; Kim, H. Towards a smarter battery management system for electric vehicle applications: A critical review of Lithium-Ion battery State of Charge Estimation. Energies 2019, 12, 446. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Xiong, R.; Yu, Q. Fractional-Order Model-Based Incremental Capacity Analysis for Degradation State Recognition of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2019, 66, 1576–1584. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Guth, T.; Sauer, D. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources. 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hu, L.; Huang, C. Active cell balancing of lithium-ion battery pack based on average state of charge. Int. J. Energy Res. 2020, 44, 2535–2548. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. J. Power Sources 2014, 251, 38–54. [Google Scholar] [CrossRef]
Battery Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Capacity | 1.299 | 1.217 | 1.158 | 1.071 |
SOH | 96.21% | 90.13% | 85.76% | 79.34% |
Parameters | Value |
---|---|
Nominal capacity/Ah | 1.35 |
Nominal voltage/V | 3.2 |
Temperature range/°C | −20–60 |
Charge cut-off voltage/V | 3.65 |
Discharge cut-off voltage/V | 2.5 |
Internal resistance/mΩ | 33 |
SOH | τ | Rp(mΩ) | b1 | b2 | b3 | b4 | b5 | a1 | a2 | a3 | a4 | a5 | a6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
96.21% | 52.1 | 69.9 | 0.1 | −0.4 | 0.55 | −0.31 | 0.12 | −3.1 | 50.0 | 3.14 | 0.61 | −0.84 | 0.44 |
93.28% | 49.7 | 57.0 | 1.8 | −3.9 | 2.88 | −0.89 | 0.22 | 26.8 | 73.0 | 3.12 | 0.69 | −0.99 | 0.52 |
91.60% | 42.7 | 56.3 | 1.4 | −2.8 | 1.89 | −0.56 | 0.20 | −475 | 475 | 3.17 | 0.54 | −0.85 | 0.51 |
90.13% | 51.2 | 70.2 | 0.3 | −0.8 | 0.69 | −0.29 | 0.18 | 301.9 | 310.1 | 3.12 | 0.74 | −1.09 | 0.59 |
89.40% | 52.1 | 68.2 | 0.6 | −1.5 | 1.29 | −0.51 | 0.14 | −498.0 | 116.7 | 3.12 | 0.70 | −1.0 | 0.53 |
88.60% | 51.7 | 78.4 | 0.3 | −0.7 | 0.53 | −0.22 | 0.22 | 479.9 | 138.0 | 3.13 | 0.67 | −0.99 | 0.55 |
88.05% | 48.5 | 75.5 | 0.2 | −0.6 | 0.55 | −0.27 | 0.16 | −475 | 139.9 | 3.13 | 0.65 | −0.94 | 0.51 |
87.38% | 50.1 | 71.5 | 0.2 | −0.6 | 0.62 | −0.31 | 0.25 | 483.5 | 145.9 | 3.13 | 0.64 | −0.92 | 0.49 |
85.73% | 49.8 | 72.2 | 0.2 | −0.3 | 0.14 | −0.07 | 0.12 | 10.5 | 72.3 | 3.12 | 0.69 | −1.01 | 0.55 |
84.56% | 49.1 | 75.3 | 0.4 | −1.0 | 0.90 | −0.37 | 0.17 | 4.7 | 54.6 | 3.1 | 0.79 | −1.18 | 0.63 |
82.61% | 46.7 | 72.7 | 0.6 | −1.4 | 1.24 | −0.49 | 0.19 | 0.8 | 41.5 | 3.1 | 0.78 | −1.14 | 0.61 |
81.26% | 53.6 | 69.5 | 0.4 | −0.9 | 0.73 | −0.27 | 0.24 | 1.2 | 51.0 | 3.12 | 0.69 | −1.02 | 0.55 |
79.34% | 55.7 | 66.4 | −0.3 | 0.4 | 0.07 | −0.18 | 0.29 | 270.3 | 356.8 | 3.12 | 0.71 | −1.03 | 0.54 |
SoH | Driving Distance: 50 km | Driving Distance: 100 km | ||||
---|---|---|---|---|---|---|
Strategy A | Strategy B | Reduction | Strategy A | Strategy B | Reduction | |
96.21% | 13.16 | 13.16 | -- | 32.95 | 32.95 | -- |
90.13% | 13.75 | 13.90 | 1.08% | 33.63 | 33.83 | 0.59% |
85.76% | 14.13 | 14.34 | 1.46% | 34.05 | 34.38 | 0.96% |
79.34% | 14.82 | 15.16 | 2.24% | 34.90 | 35.38 | 1.36% |
SoH | Driving Distance: 50 km | Driving Distance: 100 km | ||||
---|---|---|---|---|---|---|
Strategy A | Strategy B | Reduction | Strategy A | Strategy B | Reduction | |
96.21% | 13.30 | 13.30 | -- | 33.26 | 33.26 | -- |
90.13% | 13.86 | 14.02 | 1.14% | 33.84 | 34.08 | 0.70% |
85.76% | 14.23 | 14.41 | 1.25% | 34.22 | 34.52 | 0.89% |
79.34% | 14.86 | 15.20 | 2.24% | 34.91 | 35.40 | 1.38% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Lu, J.; Liu, B.; Zhou, N.; Li, S. Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries. Energies 2020, 13, 2543. https://doi.org/10.3390/en13102543
Chen Z, Lu J, Liu B, Zhou N, Li S. Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries. Energies. 2020; 13(10):2543. https://doi.org/10.3390/en13102543
Chicago/Turabian StyleChen, Zeyu, Jiahuan Lu, Bo Liu, Nan Zhou, and Shijie Li. 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries" Energies 13, no. 10: 2543. https://doi.org/10.3390/en13102543
APA StyleChen, Z., Lu, J., Liu, B., Zhou, N., & Li, S. (2020). Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries. Energies, 13(10), 2543. https://doi.org/10.3390/en13102543