Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Adsorbent
2.3. Theoretical Approaches
2.4. Operating Conditions
3. Results
3.1. Model Validation
3.2. Influence of Inlet Hot-Water Temperature on the System Performance
3.3. Influence of Cooling Water Temperature on the System Performance
3.4. Influence of Chilled Water Temperature on the System Performance
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A0 | Isotherm coefficient (-) |
B | Isotherm coefficient (-) |
A | Area (m2) |
CP | Specific heat (J/kgK) |
DSO | Pre-exponential constant of surface diffusivity (m2/s) |
Ea | Activation energy of surface diffusion (J/mol) |
K | Isotherm coefficient (-) |
KHenry | Isotherm coefficient (-) |
KSips | Isotherm coefficient (-) |
ksap | Overall mass transfer coefficient (W/m2K) |
Lw | Latent heat of vaporization (J/kg) |
Mass flow rate (kg/s) | |
n | Isotherm coefficient (-) |
P | Pressure (Pa) |
q | Adsorption rate (g/g) |
Qst | Heat of adsorption (kJ/kg) |
Q | Heat (kW) |
R | Ideal gas constant (J/kgK) |
rp | Particle size (m) |
T | Temperature (K) |
t | Time (s) |
U | overall heat transfer coefficient (W/m2K) |
W | Weight (kg) |
WF,HX | Weight of fin (kg) |
WK,HX | Weight of heat transfer tube (kg) |
Symbol | |
β | Isotherm coefficient (-) |
Superscripts | |
* | Equilibrium |
max | Maximum |
Subscripts | |
Al | Aluminum |
Cu | Cupper |
Chilled | Chilled water |
Cond | Condenser |
CW | Cooling water |
EW | Refrigerant in evaporator |
Eva | Evaporator |
HX | Heat exchanger |
HW | Hot water |
S | Saturation |
W | Water |
References
- Al-Mousawi, F.N.; Al-Dadah, R.; Mahmoud, S. Novel Adsorption System for Cooling and Power Generation Utilizing Low Grade Heat Sources. In Proceedings of the 2016 International Conference for Students on Applied Engineering (ICSAE), Newcastle upon Tyne, UK, 20–21 October 2016; pp. 334–339. [Google Scholar]
- Saha, B.B.; Boelman, E.C.; Kashiwagi, T. Computer simulation of a silica gel-water adsorption refrigeration cycle-the influence of operating conditions on cooling output and COP. Unkn. J. 1995, 101, 348–357. [Google Scholar]
- Rezk, A.R.; Al-Dadah, R.K. Physical and operating conditions effects on silica gel/water adsorption chiller performance. Appl. Energy 2012, 89, 142–149. [Google Scholar] [CrossRef]
- Wang, D.; Xia, Z.; Wu, J.; Wang, R.; Zhai, H.; Dou, W. Study of a novel silica gel–water adsorption chiller. Part, I. Design and performance prediction. Int. J. Refrig. 2005, 28, 1073–1083. [Google Scholar] [CrossRef]
- Wang, D.; Wu, J.; Xia, Z.; Zhai, H.; Wang, R.; Dou, W. Study of a novel silica gel–water adsorption chiller. Part II. Experimental study. Int. J. Refrig. 2005, 28, 1084–1091. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Xia, Z.; Kiplagat, J.; Lu, Z. Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study. Appl. Energy 2010, 87, 2673–2681. [Google Scholar] [CrossRef]
- Alahmer, A.; Wang, X.; Al-Rbaihat, R.; Alam, K.A.; Saha, B.B. Performance evaluation of a solar adsorption chiller under different climatic conditions. Appl. Energy 2016, 175, 293–304. [Google Scholar] [CrossRef]
- Chua, H.; Ng, K.; Wang, W.; Yap, C.; Wang, X. Transient modeling of a two-bed silica gel-water adsorption chiller. Int. J. Heat Mass Transf. 2004, 47, 659–669. [Google Scholar] [CrossRef]
- Li, S.; Wu, J. Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system. Appl. Energy 2009, 86, 958–967. [Google Scholar] [CrossRef]
- Ng, K.; Chua, H.; Chung, C.; Loke, C.; Kashiwagi, T.; Akisawa, A.; Saha, B.B. Experimental investigation of the silica gel-water adsorption isotherm characteristics. Appl. Therm. Eng. 2001, 21, 1631–1642. [Google Scholar] [CrossRef]
- Chang, W.-S.; Wang, C.-C.; Shieh, C.-C. Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller. Appl. Therm. Eng. 2009, 29, 2100–2105. [Google Scholar] [CrossRef]
- Freni, A.; Sapienza, A.; Glaznev, I.S.; Aristov, Y.I.; Restuccia, G. Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate”. Int. J. Refrig. 2012, 35, 518–524. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, D.; Zhang, J.; Han, Y.; Sun, W. Simulation of operating characteristics of the silica gel-water adsorption chiller powered by solar energy. Sol. Energy 2011, 85, 1469–1478. [Google Scholar] [CrossRef]
- Rezk, A.; Al-Dadah, R.; Mahmoud, S.; Elsayed, A. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Appl. Therm. Eng. 2013, 53, 278–284. [Google Scholar] [CrossRef]
- Myat, A.; Choon, N.K.; Thu, K.; Kim, Y.-D. Experimental investigation on the optimal performance of Zeolite-water adsorption chiller. Appl. Energy 2013, 102, 582–590. [Google Scholar] [CrossRef]
- Li, A.; Ismail, A.B.; Thu, K.; Ng, K.C.; Loh, W.S. Performance evaluation of a zeolite-water adsorption chiller with entropy analysis of thermodynamic insight. Appl. Energy 2014, 130, 702–711. [Google Scholar] [CrossRef]
- Hong, S.W.; Ahn, S.H.; Chung, J.D.; Bae, K.J.; Cha, D.A.; Kwon, O.K. Characteristics of FAM-Z01 compared to silica gels in the performance of an adsorption bed. Appl. Therm. Eng. 2016, 104, 24–33. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Thu, K.; Ng, K.C. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle. Desalination 2014, 344, 350–356. [Google Scholar] [CrossRef]
- Rezk, A.; Al-Dadah, R.; Mahmoud, S.; Elsayed, A. Characterisation of metal organic frameworks for adsorption cooling. Int. J Heat Mass Transf. 2012, 55, 7366–7374. [Google Scholar] [CrossRef] [Green Version]
- Rezk, A.; Raya, A.-D.; Mahmoud, S.; Elsayed, A. Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications. Appl. Energy 2013, 112, 1025–1031. [Google Scholar] [CrossRef]
- Solovyeva, M.; Gordeeva, L.; Krieger, T.; Aristov, Y.I. MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption. Energy Convers. Manag. 2018, 174, 356–363. [Google Scholar] [CrossRef]
- Teo, H.W.B.; Chakraborty, A.; Kitagawa, Y.; Kayal, S. Experimental study of isotherms and kinetics for adsorption of water on Aluminium Fumarate. Int. J. Heat Mass Transf. 2017, 114, 621–627. [Google Scholar] [CrossRef]
- Teo, H.W.B.; Chakraborty, A.; Kayal, S. Formic acid modulated (fam) aluminium fumarate MOF for improved isotherms and kinetics with water adsorption: Cooling/heat pump applications. Microporous Mesoporous Mater. 2018, 272, 109–116. [Google Scholar] [CrossRef]
- Youssef, P.G.; Dakkama, H.; Mahmoud, S.M.; AL-Dadah, R.K. Experimental investigation of adsorption water desalination/cooling system using CPO-27Ni MOF. Desalination 2017, 404, 192–199. [Google Scholar] [CrossRef]
- Al-Mousawi, F.N.; Al-Dadah, R.; Mahmoud, S. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials. Energy Convers. Manag. 2016, 126, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Chakraborty, A. Water adsorption studies on synthesized alkali-ions doped Al-fumarate MOFs and Al-fumarate+ zeolite composites for higher water uptakes and faster kinetics. Microporous Mesoporous Mater. 2019, 288, 109590. [Google Scholar] [CrossRef]
- Youssef, P.; Mahmoud, S.; Al-Dadah, R.; Elsayed, E.; El-Samni, O. Numerical Investigation of Aluminum Fumarate MOF adsorbent material for adsorption desalination/cooling application. Energy Procedia 2017, 142, 1693–1698. [Google Scholar] [CrossRef]
- Elsayed, E.; Raya, A.-D.; Mahmoud, S.; Elsayed, A.; Anderson, P.A. Aluminium fumarate and CPO-27 (Ni) MOFs: Characterization and thermodynamic analysis for adsorption heat pump applications. Appl. Therm. Eng. 2016, 99, 802–812. [Google Scholar] [CrossRef]
Weight of Adsorbent (kg) | Chilled Water Temp. (°C) | Cooling Water Temp. (°C) | Hot Water Temp. (°C) | Cooling Water Flow Rate (kg/s) | Hot Water Flow Rate (kg/s) | Chilled Water Flow Rate (kg/s) | Cycle Time (sec) | Fixed U·A Adsorber/Condenser/Evaporator (W/K) |
---|---|---|---|---|---|---|---|---|
8 (each bed) | 13 | 27–33 | 80 | 1.0 | 1.0 | 0.7 | 420 | 1430/4500/ 1170 |
Property | Silica-Gel [2] | Aluminum Fumarate [22,27,28] | FAM-Z01 [17] |
---|---|---|---|
Pre-exponential constant of surface diffusivity (Dso, m2/s) | 2.54 × 10−4 | 3.63 × 10−14 | 2.54 × 10−4 |
Activation energy of diffusion (Ea, J/mol) | 45,500 | 18,026 | 42,000 |
Particle size (r, m) | 0.2 × 10−3 | 0.65 × 10−6 | 0.2 × 10−3 |
Specific heat (cp, J/kg·K) | 921 | 900 | 805 |
Heat of adsorption (Qst, kJ/kg) | 2430 | 2780 | 3109 |
Weight of Adsorbent (kg) | Chilled Water Temp. (°C) | Cooling Water Temp. (°C) | Cooling Water Flow Rate (kg/s) | Hot Water Flow Rate (kg/s) | Chilled Water Flow Rate (kg/s) | Cycle Time (sec) | Fixed UA Adsorber/Condenser/Evaporator (W/K) |
---|---|---|---|---|---|---|---|
47 | 14 | 30 | 1.7 | 1.7 | 0.7 | 420 | 2460/11190/1910 |
Cycle | Desorption | Pre-Heating Pre-Cooling | Adsorption | Pre-Heating Pre-Cooling | |
---|---|---|---|---|---|
Time(s) | 420 | 30 | 420 | 30 | |
Valve | Adsorption | X | X | O | X |
Condenser | O | X | X | X | |
Desorption | O | X | X | X | |
Evaporator | X | X | O | X | |
Heat exchanger | Bed 1 | Cold water | Hot water | Hot water | Cold water |
Bed 2 | Hot water | Cold water | Cold water | Hot water |
Property | Value |
---|---|
ACond (m2) | 3.73 |
AEva (m2) | 1.91 |
AHX (m2) | 2.46 |
CP,Al (J/kg·K) | 905 |
CP,Cu (J/kg·K) | 386 |
Cp,W (J/kg·K) | 4180 |
Lw (J/kg) | 2.5 × 106 |
WCond (kg) | 24.28 |
WEva (kg) | 12.45 |
WEW (kg) | 50.00 |
WF,HX (kg) | 64.04 |
WK,HX (kg) | 51.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-G.; Bae, K.J.; Kwon, O.K. Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents. Energies 2020, 13, 2553. https://doi.org/10.3390/en13102553
Lee J-G, Bae KJ, Kwon OK. Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents. Energies. 2020; 13(10):2553. https://doi.org/10.3390/en13102553
Chicago/Turabian StyleLee, Jung-Gil, Kyung Jin Bae, and Oh Kyung Kwon. 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents" Energies 13, no. 10: 2553. https://doi.org/10.3390/en13102553
APA StyleLee, J. -G., Bae, K. J., & Kwon, O. K. (2020). Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents. Energies, 13(10), 2553. https://doi.org/10.3390/en13102553