Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities
Abstract
:1. Introduction
2. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Total Cross Sections
2.1. Computing the Second-Order Sensitivities
2.2. Alternative Path: Computing the Second-Order Sensitivities
2.3. Numerical Results for
2.3.1. Second-Order Relative Sensitivities
2.3.2. Second-Order Relative Sensitivities
2.3.3. Second-Order Relative Sensitivities
2.3.4. Second-Order Relative Sensitivities
2.3.5. Second-Order Relative Sensitivities
2.3.6. Second-Order Relative Sensitivities
2.3.7. Second-Order Relative Sensitivities
2.3.8. Second-Order Relative Sensitivities
2.3.9. Second-Order Relative Sensitivities
2.3.10. Second-Order Relative Sensitivities
2.3.11. Second-Order Relative Sensitivities
2.3.12. Second-Order Relative Sensitivities
2.3.13. Second-Order Relative Sensitivities
3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Scattering Cross Sections
3.1. Computing the Second-Order Sensitivities
3.1.1. Second-Order Sensitivities
3.1.2. Second-Order Sensitivities
3.2. Alternative Path: Computing the Second-Order Sensitivities
3.2.1. Second-Order Sensitivities
3.2.2. Second-Order Sensitivities
3.3. Numerical Results for
3.3.1. Results for the Relative Sensitivities
- The submatrix , comprises the 2nd-order sensitivities of the leakage response with respect to the isotopic number density and to the 0th-order scattering cross sections of 239Pu. Table 13 presents the 8 relative sensitivities in this submatrix that have values greater than 1.0. All of these sensitivities involve the 0th-order self-scattering cross sections for energy groups of isotope 239Pu. The largest value in this submatrix is , which involves the 0th-order self-scattering cross sections for the 12th energy group of 239Pu.
- The submatrix , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of 239Pu and to the 0th-order scattering cross sections of 1H, includes 7 elements that have values greater than 1.0, as listed in Table 14. Most of these 7 relative sensitivities are with respect to the 0th-order in-scattering or out-scattering cross sections. The largest value in this submatrix is , involving the 0th-order out-scattering cross sections for energy groups of isotope 239Pu.
3.3.2. Results for the Relative Sensitivities
- The sensitivity matrix comprising the 2nd-order mixed sensitivities of the leakage response with respect to the isotopic number density and the 1st-order scattering cross sections of 239Pu, includes only one element, namely , which has an absolute value greater than 1.0. This element involves the 1st-order self-scattering cross section for the 7th energy group of 239Pu.
- The sensitivity matrix comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of 239Pu and to the 1st-order scattering cross sections of 1H, includes 6 elements that have values greater than 1.0, as listed in Table 16. These 6 large relative sensitivities involve the 1st-order self-scattering or out-scattering cross sections for energy groups of isotope 1H, respectively.
3.3.3. Results for the Relative Sensitivities
3.3.4. Results for the Relative Sensitivities
4. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Fission Cross Sections
4.1. Computing the Second-Order Sensitivities
4.2. Alternative Path: Computing the Second-Order Sensitivities
4.3. Numerical Results for
4.3.1. Second-Order Relative Sensitivities
4.3.2. Second-Order Relative Sensitivities
4.3.3. Second-Order Relative Sensitivities
4.3.4. Second-Order Relative Sensitivities
5. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Average Number of Neutrons per Fission
5.1. Computing the Second-Order Sensitivities
5.2. Alternative Path: Computing the Second-Order Sensitivities
5.3. Numerical Results for
5.3.1. Second-Order Relative Sensitivities
5.3.2. Second-Order Relative Sensitivities
5.3.3. Second-Order Relative Sensitivities
5.3.4. Second-Order Relative Sensitivities
6. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Definitions of PERP Model Parameters
References
- Cacuci, D.G.; Fang, R.; Favorite, J.A. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: I. Effects of imprecisely known microscopic total and capture cross sections. Energies 2019, 12, 4219. [Google Scholar]
- Fang, R.; Cacuci, D.G. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: II. Effects of imprecisely known microscopic scattering cross sections. Energies 2019, 12, 4114. [Google Scholar]
- Cacuci, D.G.; Fang, R.; Favorite, J.A.; Badea, M.C.; di Rocco, F. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: III. Effects of imprecisely known microscopic fission cross sections and average number of neutrons per fission. Energies 2019, 12, 4100. [Google Scholar]
- Fang, R.; Cacuci, D.G. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: IV. Effects of imprecisely known source parameters. Energies 2020, 13, 1431. [Google Scholar]
- Cacuci, D.G. Application of the second-order comprehensive adjoint sensitivity analysis methodology to compute 1st-and 2nd-order sensitivities of flux functionals in a multiplying system with source. Nucl. Sci. Eng. 2019, 193, 555–600. [Google Scholar] [CrossRef] [Green Version]
- Cacuci, D.G. Second-order sensitivities of a general functional of the forward and adjoint flues in a multiplying nuclear system with source. Nucl. Eng. Des. 2019, 344, 83–106. [Google Scholar] [CrossRef]
- Cacuci, D.G. Second-order adjoint sensitivity analysis of a general ratio of functionals of the forward and adjoint fluxes in a multiplying nuclear system with source. Ann. Nucl. Energy 2020, 135, 106956. [Google Scholar] [CrossRef]
- Valentine, T.E. Polyethylene-Reflected Plutonium Metal Sphere Subcritical Noise Measurements, SUB-PU-METMIXED-001. In International Handbook of Evaluated Criticality Safety Benchmark Experiments; NEA/NSC/DOC(95)03/I-IX; report NEA/NSC/DOC(95)03/I, OECD-NEA (2008); Organization for Economic Co-operation and Development, Nuclear Energy Agency: Paris, France, 2008. [Google Scholar]
- Alcouffe, R.E.; Baker, R.S.; Dahl, J.A.; Turner, S.A.; Ward, R. PARTISN: A Time-Dependent, Parallel Neutral Particle Transport Code System; LA-UR-08-07258 (2008); Los Alamos National Laboratory: Los Alamos, NM, USA, 2008.
- Wilson, W.B.; Perry, R.T.; Shores, E.F.; Charlton, W.S.; Parish, T.A.; Estes, G.P.; Brown, T.H.; Arthur, E.D.; Bozoian, M.; England, T.R.; et al. SOURCES4C: A Code for Calculating (α,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra. In Proceedings of the 12th Biennial Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society, Santa Fe, NM, USA, 14–18 April 2002. [Google Scholar]
- Conlin, J.L.; Parsons, D.K.; Gardiner, S.J.; Gray, M.G.; Lee, M.B.; White, M. MENDF71X: Multigroup Neutron Cross-Section Data Tables Based upon ENDF/B-VII.1X. In Los Alamos National Laboratory Report; LA-UR-15-29571 (October 7, 2013); Los Alamos National Laboratory: Los Alamos, NM, USA, 2013. [Google Scholar]
- Chadwick, M.B.; Herman, M.; Obložinský, P.; Dunn, M.; Danon, Y.; Kahler, A.; Smith, D.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [Google Scholar] [CrossRef]
- Cacuci, D.G.; Fang, R.; Favorite, J.A. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: VI. Overall impact of 1st-and 2nd-order sensitivities on response uncertainties. Energies 2020, 13, 1674. [Google Scholar]
Materials | Isotopes | Weight Fraction | Density (g/cm3) | Zones |
---|---|---|---|---|
Material 1 (plutonium metal) | Isotope 1 (239Pu) | 9.3804 × 10−1 | 19.6 | Material 1 is assigned to zone 1, which has a radius of 3.794 cm. |
Isotope 2 (240Pu) | 5.9411 × 10−2 | |||
Isotope 3 (69Ga) | 1.5152 × 10−3 | |||
Isotope 4 (71Ga) | 1.0346 × 10−3 | |||
Material 2 (polyethylene) | Isotope 5 (C) | 8.5630 × 10−1 | 0.95 | Material 2 is assigned to zone 2, which has an inner radius of 3.794 cm and an outer radius of 7.604 cm. |
Isotope 6 (1H) | 1.4370 × 10−1 |
(239Pu) | 18 elements with absolute values >1.0 | 1 element with absolute value >1.0 | Min. value = −4.51 × 10−2 at g = 12 | Min. value = −3.06 × 10−2 at g = 12 | 12 elements with absolute value >1.0 | 22 elements with absolute values >1.0 |
(240Pu) | 10 elements with absolute values >1.0 | Min. value = −2.05 × 10−1 at g = 12 | Min. value = −5.45 × 10−3 at g = 12 | Min. value = −3.70 × 10−3 at g = 12 | 1 element with absolute value >1.0 | 9 elements with absolute values >1.0 |
(69Ga) | Min. value = −7.14 × 10−3 at g = 12 | Min. value = −4.52 × 10−4 at g = 12 | Min. value = −3.78 × 10−3 at g = 12 | Min. value = −1.40 × 10−5 at g = 13 | Min. value = −3.06 × 10−3 at g = 30 | Min. value = −3.66 × 10−2 at g = 30 |
(71Ga) | Min. value = −4.51 × 10−3 at g = 12 | Min. value = −2.85 × 10−4 at g = 12 | Min. value = −1.32 × 10−5 at g = 13 | Min. value = −2.56 × 10−3 at g = 12 | Min. value = −1.95 × 10−3 at g = 30 | Min. value = −2.33 × 10−2 at g = 30 |
(C) | 9 elements with absolute values >1.0 | Min. value = −1.14 × 10−1 at g = 12 | Min. value = −5.13 × 10−3 at g = 12 | Min. value = −3.51 × 10−3 at g = 22 | 1 element with absolute value >1.0 | 11 elements with absolute values >1.0 |
(1H) | 11 elements with absolute values >1.0 | Min. value = −1.83 × 10−1 at g = 12 | Min. value = −8.21 × 10−3 at g = 12 | Min. value = −6.23 × 10−3 at g = 22 | 1 element with absolute value >1.0 | 19 elements with absolute values >1.0 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −0.005 | 16 | −10.430 |
2 | −0.009 | 17 | −4.783 |
3 | −0.026 | 18 | −2.885 |
4 | −0.122 | 19 | −2.242 |
5 | −0.621 | 20 | −1.883 |
6 | −1.795 | 21 | −1.631 |
7 | −10.307 | 22 | −1.168 |
8 | −9.440 | 23 | −0.934 |
9 | −10.951 | 24 | −0.597 |
10 | −10.978 | 25 | −0.687 |
11 | −10.064 | 26 | −0.732 |
12 | −17.172 | 27 | −0.219 |
13 | −15.138 | 28 | −0.044 |
14 | −12.627 | 29 | −0.392 |
15 | −9.217 | 30 | −5.241 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −4.720 × 10−6 | 16 | −2.034 |
2 | −2.276 × 10−5 | 17 | −1.657 |
3 | −1.017 × 10−4 | 18 | −1.441 |
4 | −6.664 × 10−4 | 19 | −1.315 |
5 | −7.945 × 10−3 | 20 | −1.219 |
6 | −0.019 | 21 | −1.136 |
7 | −0.218 | 22 | −1.040 |
8 | −0.328 | 23 | −0.962 |
9 | −0.332 | 24 | −0.870 |
10 | −0.387 | 25 | −0.824 |
11 | −0.439 | 26 | −0.758 |
12 | −1.118 | 27 | −0.674 |
13 | −1.363 | 28 | −0.623 |
14 | −1.402 | 29 | −0.605 |
15 | −1.245 | 30 | −7.952 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −4.001 × 10−6 | 16 | −11.421 |
2 | −2.325 × 10−5 | 17 | −11.674 |
3 | −1.087 × 10−4 | 18 | −11.427 |
4 | −8.747 × 10−4 | 19 | −10.979 |
5 | −7.585 × 10−3 | 20 | −10.380 |
6 | −0.040 | 21 | −9.744 |
7 | −0.447 | 22 | −8.947 |
8 | −0.646 | 23 | −8.287 |
9 | −1.001 | 24 | −7.499 |
10 | −1.250 | 25 | −7.115 |
11 | −1.478 | 26 | −6.559 |
12 | −3.696 | 27 | −5.860 |
13 | −4.693 | 28 | −5.479 |
14 | −5.379 | 29 | −5.490 |
15 | −5.577 | 30 | −94.909 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −4.881 × 10−4 | 16 | −1.136 |
2 | −9.701 × 10−4 | 17 | −0.525 |
3 | −2.796 × 10−3 | 18 | −0.320 |
4 | −0.013 | 19 | −0.254 |
5 | −0.068 | 20 | −0.216 |
6 | −0.198 | 21 | −0.190 |
7 | −1.148 | 22 | −0.137 |
8 | −1.052 | 23 | −0.106 |
9 | −1.221 | 24 | −0.067 |
10 | −1.223 | 25 | −0.084 |
11 | −1.121 | 26 | −0.090 |
12 | −1.914 | 27 | −0.005 |
13 | −1.676 | 28 | 0.0002 |
14 | −1.386 | 29 | −0.049 |
15 | −1.007 | 30 | −0.639 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −4.446 × 10−6 | 16 | −1.553 |
2 | −1.222 × 10−5 | 17 | −1.568 |
3 | −4.406 × 10−5 | 18 | −1.526 |
4 | −2.817 × 10−4 | 19 | −1.463 |
5 | −1.977 × 10−3 | 20 | −1.381 |
6 | −8.680 × 10−3 | 21 | −1.295 |
7 | −0.083 | 22 | −1.189 |
8 | −0.107 | 23 | −1.099 |
9 | −0.162 | 24 | −0.996 |
10 | −0.201 | 25 | −0.944 |
11 | −0.234 | 26 | −0.868 |
12 | −0.563 | 27 | −0.763 |
13 | −0.685 | 28 | −0.730 |
14 | −0.762 | 29 | −0.740 |
15 | −0.773 | 30 | −12.741 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −4.471 × 10−4 | 16 | −1.177 |
2 | −8.863 × 10−4 | 17 | −0.593 |
3 | −2.548 × 10−3 | 18 | −0.385 |
4 | −0.012 | 19 | −0.306 |
5 | −0.061 | 20 | −0.257 |
6 | −0.178 | 21 | −0.223 |
7 | −1.044 | 22 | −0.161 |
8 | −0.982 | 23 | −0.129 |
9 | −1.146 | 24 | −0.082 |
10 | −1.143 | 25 | −0.096 |
11 | −1.047 | 26 | −0.100 |
12 | −1.803 | 27 | −0.027 |
13 | −1.613 | 28 | −0.005 |
14 | −1.360 | 29 | −0.055 |
15 | −1.004 | 30 | −0.761 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −3.183 × 10−6 | 16 | −1.665 |
2 | −8.920 × 10−6 | 17 | −1.676 |
3 | −3.198 × 10−5 | 18 | −1.626 |
4 | −2.007 × 10−4 | 19 | −1.557 |
5 | −1.438 × 10−3 | 20 | −1.471 |
6 | −6.575 × 10−3 | 21 | −1.383 |
7 | −0.070 | 22 | −1.273 |
8 | −0.102 | 23 | −1.183 |
9 | −0.161 | 24 | −1.076 |
10 | −0.200 | 25 | −1.024 |
11 | −0.232 | 26 | −0.947 |
12 | −0.567 | 27 | −0.850 |
13 | −0.715 | 28 | −0.801 |
14 | −0.812 | 29 | −0.804 |
15 | −0.827 | 30 | −14.695 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −7.340 × 10−4 | 16 | −1.787 |
2 | −1.456 × 10−3 | 17 | −0.892 |
3 | −4.186 × 10−3 | 18 | −0.597 |
4 | −0.020 | 19 | −0.496 |
5 | −0.101 | 20 | −0.431 |
6 | −0.293 | 21 | −0.386 |
7 | −1.697 | 22 | −0.286 |
8 | −1.554 | 23 | −0.235 |
9 | −1.808 | 24 | −0.153 |
10 | −1.821 | 25 | −0.183 |
11 | −1.680 | 26 | −0.196 |
12 | −2.884 | 27 | −0.055 |
13 | −2.542 | 28 | −0.011 |
14 | −2.114 | 29 | −0.114 |
15 | −1.546 | 30 | −1.933 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | −9.518 × 10−6 | 16 | −3.558 |
2 | −2.606 × 10−5 | 17 | −3.679 |
3 | −9.353 × 10−5 | 18 | −3.656 |
4 | −5.963 × 10−4 | 19 | −3.574 |
5 | −4.196 × 10−4 | 20 | −3.440 |
6 | −0.018 | 21 | −3.296 |
7 | −0.169 | 22 | −3.102 |
8 | −0.220 | 23 | −2.937 |
9 | −0.332 | 24 | −2.730 |
10 | −0.415 | 25 | −2.630 |
11 | −0.489 | 26 | −2.476 |
12 | −1.190 | 27 | −2.272 |
13 | −1.465 | 28 | −2.170 |
14 | −1.659 | 29 | −2.176 |
15 | −1.724 | 30 | −47.398 |
(239Pu) | 8 elements with absolute values >1.0 | Max. value = 1.18 × 10−1 g’ = 12, g = 12 | Max. value = 6.80 × 10−3 g’ = 12, g = 12 | Max. value = 4.36 × 10−3 g’ = 12, g = 12 | Max. value = 8.70 × 10−1 g’ = 12, g = 12 | 7 elements with absolute values >1.0 |
(240Pu) | Max. value = 2.02 × 10−1 g’ = 12, g = 12 | Max. value = 2.23 × 10−2 g’ = 12, g = 12 | Max. value = 7.74 × 10−4 g’ = 12, g = 12 | Max. value = 4.96 × 10−4 g’ = 12, g = 12 | Max. value = 9.89 × 10−2 g’ = 12, g = 12 | Max. value = 1.78 × 10−1 g’ = 16, g = 17 |
(69Ga) | Max. value = 6.82 × 10−4 g’ = 12, g = 12 | Max. value = 4.52 × 10−5 g’ = 12, g = 12 | Max. value = 5.17 × 10−4 g’ = 12, g = 12 | Max. value = 1.67 × 10−6 g’ = 12, g = 12 | Max. value = 3.01 × 10−4 g’ = 12, g = 12 | Max. value = 5.47 × 10−4 g’ = 16, g = 17 |
(71Ga) | Max. value = 4.25 × 10−4 g’ = 12, g = 12 | Max. value = 2.82 × 10−5 g′ = 13, g = 13 | Max. value = 1.62 × 10−6 g’ = 12, g = 12 | Max. value = 3.31 × 10−4 g’ = 12, g = 12 | Max. value = 1.77 × 10−4 g’ = 12, g = 12 | Max. value = 2.93 × 10−4 g’ = 16, g = 17 |
(C) | Max. value = 1.70 × 10−1 g’ = 12, g = 12 | Max. value = 1.13 × 10−2 g’ = 12, g = 12 | Max. value = 6.52 × 10−4 g’ = 12, g = 12 | Max. value = 4.19 × 10−4 g’ = 12, g = 12 | Max. value = 1.59 × 10−1 g’ = 12, g = 12 | Max. value = 1.55 × 10−1 g’ = 16, g = 17 |
(1H) | Max. value = 2.72 × 10−1 g’ = 12, g = 12 | Max. value = 1.80 × 10−2 g’ = 12, g = 12 | Max. value = 1.04 × 10−3 g’ = 12, g = 12 | Max. value = 6.68 × 10−4 g’ = 12, g = 12 | Max. value = 1.48 × 10−1 g’ = 12, g = 12 | Max. value = 3.81 × 10−1 g’ = 16, g = 17 |
Group | ||||||||
---|---|---|---|---|---|---|---|---|
values | 1.461 | 1.155 | 1.206 | 1.147 | 1.036 | 1.912 | 1.660 | 1.235 |
Group | |||||||
---|---|---|---|---|---|---|---|
values | 1.386 | 1.300 | 1.110 | 1.146 | 1.430 | 1.289 | 1.585 |
(239Pu) | 1 element with absolute value >1.0 | Min. value = −6.96 × 10−2 g’ = 7, g = 7 | Min. value = −2.34 × 10−3 g’ = 7, g = 7 | Min. value = −1.42 × 10−3 g’ = 7, g = 7 | Min. value = −3.51 × 10−1 g’ = 12, g = 12 | 6 elements with absolute values >1.0 |
(240Pu) | Min. value = −1.30 × 10−1 g’ = 7, g = 7 | Min. value = −1.32 × 10−2 g’ = 7, g = 7 | Min. value = −2.65 × 10−4 g’ = 7, g = 7 | Min. value = −1.61 × 10−4 g’ = 7, g = 7 | Min. value = −4.00 × 10−2 g’ = 12, g = 12 | Min. value = −1.50 × 10−1 g’ = 12, g = 13 |
(69Ga) | Min. value = −3.42 × 10−4 g’ = 12, g = 12 | Min. value = −2.14 × 10−5 g’ = 12, g = 12 | Min. value = −1.77 × 10−4 g’ = 7, g = 7 | Min. value = −4.06 × 10−7 g’ = 7, g = 7 | Min. value = −1.22 × 10−4 g’ = 12, g = 12 | Min. value = −4.56 × 10−4 g’ = 12, g = 13 |
(71Ga) | Min. value = −2.13 × 10−4 g’ = 12, g = 12 | Min. value = −1.33 × 10−5 g’ = 12, g = 12 | Min. value = −4.40 × 10−7 g’ = 12, g = 12 | Min. value = −1.07 × 10−4 g’ = 7, g = 7 | Min. value = −7.23 × 10−5 g’ = 12, g = 12 | Min. value = −2.68 × 10−4 g’ = 12, g = 13 |
(C) | Min. value = −1.12 × 10−1 g’ = 7, g = 7 | Min. value = −6.76 × 10−3 g’ = 7, g = 7 | Min. value = −2.27 × 10−4 g’ = 7, g = 7 | Min. value = −1.38 × 10−4 g’ = 7, g = 7 | Min. value = −6.24 × 10−2 g’ = 12, g = 12 | Min. value = −1.31 × 10−1 g’ = 12, g = 13 |
(1H) | Min. value = −1.77 × 10−1 g’ = 7, g = 7 | Min. value = −1.06 × 10−2 g’ = 7, g = 7 | Min. value = −3.57 × 10−4 g’ = 7, g = 7 | Min. value = −2.17 × 10−4 g’ = 7, g = 7 | Min. value = −5.73 × 10−2 g’ = 12, g = 12 | Min. value = −3.19 × 10−1 g’ = 12, g = 13 |
Groups | ||||||
---|---|---|---|---|---|---|
values | −1.103 | −1.327 | −1.014 | −1.162 | −1.027 | −1.210 |
(239Pu) | (240Pu) | (69Ga) | (71Pu) | (C) | (1H) | |
---|---|---|---|---|---|---|
(239Pu) | Max. value = 7.13 × 10−2 g’ = 7, g = 7 | Max. value = 4.07 × 10−3 g’ = 7, g = 7 | Max. value = 1.22 × 10−4 g’ = 7, g = 7 | Max. value = 7.57 × 10−5 g’ = 7, g = 7 | Max. value = 9.48 × 10−2 g’ = 7, g = 7 | Max. value = 3.50 × 10−1 g’ = 12, g = 12 |
(240Pu) | Max. value = 7.43 × 10−3 g’ = 7, g = 7 | Max. value = 7.52 × 10−4 g’ = 7, g = 7 | Max. value = 1.36 × 10−5 g’ = 7, g = 7 | Max. value = 8.46 × 10−6 g’ = 7, g = 7 | Max. value = 1.08 × 10−2 g’ = 7, g = 7 | Max. value = 4.02 × 10−2 g’ = 12, g = 12 |
(69Ga) | Max. value = 1.34 × 10−5 g’ = 7, g = 7 | Max. value = 8.17 × 10−7 g’ = 7, g = 7 | Max. value = 8.93 × 10−6 g’ = 7, g = 7 | Max. value = 1.52 × 10−8 g’ = 7, g = 7 | Max. value = 2.60 × 10−5 g’ = 7, g = 7 | Max. value = 1.24 × 10−4 g’ = 12, g = 12 |
(71Ga) | Max. value = 7.50 × 10−6 g’ = 7, g = 7 | Max. value = 4.59 × 10−7 g’ = 7, g = 7 | Max. value = 1.38 × 10−8 g’ = 7, g = 7 | Max. value = 5.54 × 10−6 g’ = 7, g = 7 | Max. value = 1.51 × 10−5 g’ = 7, g = 7 | Max. value = 7.58 × 10−5 g’ = 12, g = 12 |
(C) | Max. value = 5.70 × 10−3 g’ = 7, g = 7 | Max. value = 3.49 × 10−4 g’ = 7, g = 7 | Max. value = 1.05 × 10−5 g’ = 7, g = 7 | Max. value = 6.50 × 10−6 g’ = 7, g = 7 | Max. value = 1.60 × 10−2 g’ = 7, g = 7 | Max. value = 2.80 × 10−2 g’ = 12, g = 12 |
(1H) | Max. value = 7.72 × 10−3 g’ = 7, g = 7 | Max. value = 4.72 × 10−4 g’ = 7, g = 7 | Max. value = 1.42 × 10−5 g’ = 7, g = 7 | Max. value = 8.79 × 10−6 g’ = 7, g = 7 | Max. value = 1.41 × 10−2 g’ = 7, g = 7 | Max. value = 6.98 × 10−2 g’ = 12, g = 12 |
(239Pu) | (240Pu) | (69Ga) | (71Ga) | (C) | (1H) | |
---|---|---|---|---|---|---|
(239Pu) | Min. value = −8.98 × 10−5 g’ = 7, g = 7 | Min. value = −5.43 × 10−6 g’ = 7, g = 7 | Min. value = −1.54 × 10−7 g’ = 7, g = 7 | Min. value = −9.66 × 10−8 g’ = 7, g = 7 | Min. value = −2.38 × 10−2 g’ = 7, g = 7 | Min. value = −7.00 × 10−2 g’ = 12, g = 12 |
(240Pu) | Min. value = −6.38 × 10−6 g’ = 7, g = 7 | Min. value = −4.90 × 10−7 g’ = 7, g = 7 | Min. value = −1.11 × 10−8 g’ = 7, g = 7 | Min. value = −7.62 × 10−9 g’ = 6, g=6 | Min. value = −2.72 × 10−3 g’ = 7, g = 7 | Min. value = −8.07 × 10−3 g’ = 12, g = 12 |
(69Ga) | Max. value = 1.24 × 10−8 g’ = 7, g = 7 | Max. value = 7.65 × 10−10 g’ = 7, g = 7 | Min. value = −5.25 × 10−9 g’ = 6, g = 6 | Max. value = 1.36 × 10−11 g’ = 7, g = 7 | Min. value = −6.36 × 10−6 g’ = 7, g = 7 | Min. value = −2.51 × 10−5 g’ = 12, g = 12 |
(71Ga) | Min. value = −8.45 × 10−9 g’ = 7, g = 7 | Min. value = −5.20 × 10−10 g’ = 7, g = 7 | Min. value = −1.48 × 10−11 g’ = 7, g = 7 | Min. value = −3.61 × 10−9 g’ = 6, g = 6 | Min. value = −3.69 × 10−6 g’ = 7, g = 7 | Min. value = −1.58 × 10−5 g’ = 12, g = 12 |
(C) | Max. value = 6.63 × 10−6 g’ = 7, g = 7 | Max. value = 4.08 × 10−7 g’ = 7, g = 7 | Max. value = 1.16 × 10−8 g’ = 7, g = 7 | Max. value = 7.27 × 10−9 g’ = 7, g = 7 | Min. value = −3.63 × 10−3 g’ = 7, g = 7 | Min. value = −4.15 × 10−3 g’ = 12, g = 12 |
(1H) | Max. value = 1.41 × 10−5 g’ = 7, g = 7 | Max. value = 8.65 × 10−7 g’ = 7, g = 7 | Max. value = 2.46 × 10−8 g’ = 7, g = 7 | Max. value = 1.54 × 10−8 g’ = 7, g = 7 | Min. value = −2.73 × 10−3 g’ = 7, g = 7 | Min. value = −9.49 × 10−3 g’ = 12, g = 12 |
(239Pu) | 12 elements with absolute values >1.0 | Max. value = 5.62 × 10−1 at g = 12 |
(240Pu) | 1 element with absolute value >1.0 | Max. value = 1.12 × 10−1 at g = 12 |
(69Ga) | Max. value = 4.72 × 10−3 at g = 12 | Max. value = 2.44 × 10−4 at g = 12 |
(71Ga) | Max. value = 2.98 × 10−3 at g = 12 | Max. value = 1.54 × 10−4 at g = 12 |
(C) | 1 element with absolute value >1.0 | Max. value = 6.13 × 10−2 at g = 12 |
(1H) | 7 elements with absolute values >1.0 | Max. value = 9.73 × 10−2 at g = 12 |
g | Relative Sensitivities | g | Relative Sensitivities |
---|---|---|---|
1 | 0.005 | 16 | 2.654 |
2 | 0.011 | 17 | 0.979 |
3 | 0.032 | 18 | 0.536 |
4 | 0.144 | 19 | 0.443 |
5 | 0.683 | 20 | 0.424 |
6 | 1.735 | 21 | 0.380 |
7 | 7.787 | 22 | 0.335 |
8 | 6.470 | 23 | 0.286 |
9 | 7.761 | 24 | 0.267 |
10 | 8.073 | 25 | 0.228 |
11 | 7.521 | 26 | 0.212 |
12 | 11.735 | 27 | 0.194 |
13 | 8.197 | 28 | 0.115 |
14 | 5.313 | 29 | 0.154 |
15 | 3.007 | 30 | 1.467 |
Group | g = 7 | g = 8 | g = 9 | g = 10 | g = 11 | g = 12 | g = 13 |
---|---|---|---|---|---|---|---|
values | 1.279 | 1.061 | 1.266 | 1.312 | 1.217 | 1.879 | 1.294 |
(239Pu) | 13 elements with absolute values >1.0 | Max. value = 7.72 × 10−1 at g = 12 |
(240Pu) | 6 elements with absolute values >1.0 | Max. value = 1.55 × 10−1 at g = 12 |
(69Ga) | Max. value = 6.52 × 10−3 at g = 12 | Max. value = 3.39 × 10−4 at g = 12 |
(71Ga) | Max. value = 4.11 × 10−3 at g = 12 | Max. value = 2.14 × 10−4 at g = 12 |
(C) | 6 elements with absolute values >1.0 | Max. value = 8.52 × 10−2 at g = 12 |
(1H) | 9 elements with absolute values >1.0 | Max. value = 1.35 × 10−1 at g = 12 |
Group | g = 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
values | 2.267 | 10.10 | 8.675 | 10.53 | 11.07 | 10.34 | 16.06 | 11.30 | 7.458 | 4.330 | 3.987 | 1.535 | 5.217 |
Group | g = 7 | g = 9 | g = 10 | g = 11 | g = 12 | g = 13 |
---|---|---|---|---|---|---|
values | 1.107 | 1.162 | 1.221 | 1.142 | 1.772 | 1.248 |
Group | g = 7 | g = 9 | g = 10 | g = 11 | g = 12 | g = 13 |
---|---|---|---|---|---|---|
values | 1.016 | 1.083 | 1.135 | 1.056 | 1.638 | 1.159 |
Group | g = 7 | g = 8 | g = 9 | g = 10 | g = 11 | g = 12 | g = 13 | g = 14 | g = 30 |
---|---|---|---|---|---|---|---|---|---|
values | 1.660 | 1.424 | 1.723 | 1.809 | 1.687 | 2.605 | 1.815 | 1.188 | 1.930 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, R.; Cacuci, D.G. Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities. Energies 2020, 13, 2580. https://doi.org/10.3390/en13102580
Fang R, Cacuci DG. Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities. Energies. 2020; 13(10):2580. https://doi.org/10.3390/en13102580
Chicago/Turabian StyleFang, Ruixian, and Dan G. Cacuci. 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities" Energies 13, no. 10: 2580. https://doi.org/10.3390/en13102580
APA StyleFang, R., & Cacuci, D. G. (2020). Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities. Energies, 13(10), 2580. https://doi.org/10.3390/en13102580