Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels
Abstract
:1. Introduction
2. Materials and Methods
- Geometrical features—diameter (D) and length (L) were directly measured with calipers, adapting for piece and briquette standard EN ISO 16127:2012 [33] for three replicates of randomly selected portions of fuel with a 100 + 1 g mass (pellets) or 10 briquettes and wood slivers;
- Moisture (MC)—calculated using the weight method according to the standard EN ISO 18134–3:2015 [34] for three replicates of each biofuel class;
- Volumetric density (VD)—calculated on the basis of geometrical features in randomly selected samples and weights of biofuel portions using the following formula:
- Carbon (C), hydrogen (H), and sulfur (S)—measured by applying an automatic infrared analyzer according to the standard PN-G-04584:2001 [35] for three replicates from a sample taken of crushed pine biomass;
- Nitrogen (N)—measured with an automatic katharometer according to the standard CEN/TS 15104:2006 [36] for three replicates from a sample taken of crushed pine biomass;
- Lower heating value (LHV)—calculated after determining the combustion heat according to the standard EN ISO 18125:2017 [37] for three replicates from a sample taken of crushed pine biomass;
- Ash content (AC)—calculated according to the standard EN ISO 18122:2016 [38] for three replicates from a sample taken of crushed pine biomass.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Russo, G.; Anifantis, A.S.; Verdiani, G.; Scarascia-Mugnozza, G. Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosyst. Eng. 2014, 127, 11–23. [Google Scholar] [CrossRef]
- Anifantis, A.S.; Canzio, G.; Cristiano, G.; De Lucia, B.; Russo, G.; Vecchietti, L.; Immirzi, B.; Malinconico, M.; Santagata, G. Influence of the use of drip irrigation systems and different mulching materials on ornamental sunflowers in greenhouse cultivation. Acta Hortic. 2012, 952, 385–392. [Google Scholar] [CrossRef]
- Bulgakov, V.; Pascuzzi, S.; Santoro, F.; Anifantis, A.S. Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine. Sustainability 2018, 10, 3614. [Google Scholar] [CrossRef] [Green Version]
- Anifantis, A.S.; Colantoni, A.; Pascuzzi, S. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renew. Energy 2017, 103, 115–127. [Google Scholar] [CrossRef]
- Anifantis, A.S.; Colantoni, A.; Pascuzzi, S.; Santoro, F. Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study. Sustainability 2018, 10, 378. [Google Scholar] [CrossRef] [Green Version]
- Anifantis, A.S.; Pascuzzi, S.; Scarascia-Mugnozza, G. Geothermal source heat pump performance for a greenhouse heating system: An experimental study. J. Agric. Eng. 2016, 47, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Anifantis, A.S. Performance assessment of photovoltaic, ground source heat pump and hydrogen heat generator in a stand-alone systems for greenhouse heating. Chem. Eng. Trans. 2017, 58, 511–516. [Google Scholar] [CrossRef]
- Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard. Agriculture 2019, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Przywara, A.; Kachel, M.; Koszel, M.; Leszczyński, N.; Kraszkiewicz, A.; Anifantis, A.S. The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis). Sustainability 2019, 11, 2133. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.; Verdiani, G.; Anifantis, A.S. Re-use of agricultural biomass for nurseries using proximity composting. Contemp. Eng. Sci. 2016, 9, 1151–1182. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biomass energy sources for Turkey. Energy Policy 2008, 36, 834–842. [Google Scholar] [CrossRef]
- Varhegyi, G.; Chen, H.; Godoy, S. Thermal Decomposition of Wheat, Oat, Barley, and Brassica carinata Straws. A Kinetic Study. Energy Fuels 2009, 23, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Zajac, G.; Szyszlak-Barglowicz, J.; Slowik, T.; Wasilewski, J.; Kuranc, A. Emission characteristics of biomass combustion in a domestic heating boiler fed with wood and Virginia Mallow pellets. Fresenius Environ. Bull. 2017, 26, 4663–4670. [Google Scholar]
- Piszczalka, J.; Korenko, M.; Rutkowski, K. Power use and economic evaluation of dendromass heating. Inżynieria Rol. 2007, 6, 189–196. (In Polish) [Google Scholar]
- Kalt, G.; Kranzl, L. Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach. Appl. Energy 2011, 88, 3665–3684. [Google Scholar] [CrossRef]
- Heykiri-Acma, H. Combustion characteristic of different biomass materials. Energy Convers. Manag. 2003, 44, 155–162. [Google Scholar] [CrossRef]
- Chao, C.Y.H.; Kwong, P.C.W.; Wang, J.H.; Cheung, C.W.; Kendall, G. Co-firing coal with rice hust and bamboo and the impact on particulate matters and associated PAHs emission. Biores. Technol. 2008, 99, 83–93. [Google Scholar] [CrossRef]
- Li, J.; Paul, M.C.; Younger, P.; Watson, I.; Hossain, M.; Welch, S. Combustion Modelling of Pulverized Biomass Particles at High Temperatures. Energy Procedia 2015, 66, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.-J.; Turpin, B.J.; Russell, L.M.; Bates, T.S. Organic and Elemental Carbon Measurements during ACE-Asia Suggest a Longer Atmospheric Lifetime for Elemental Carbon. Environ. Sci. Technol. 2003, 37, 3055–3061. [Google Scholar] [CrossRef]
- Domański, M.; Dzurenda, L.; Jabłoński, M.; Osipiuk, M. Wood as an Energy Material; SGGW: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Jenkins, B.M.; Baxter, L.; Miles, T. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Nussbaumer, T. Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction†. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Verma, V.; Bram, S.; De Ruyck, J. Small scale biomass heating systems: Standards, quality labelling and market driving factors—An EU outlook. Biomass Bioenergy 2009, 33, 1393–1402. [Google Scholar] [CrossRef]
- Sippula, O.; Hytönen, K.; Tissari, J.; Raunemaa, T.; Jokiniemi, J. Effect of Wood Fuel on the Emissions from a Top-Feed Pellet Stove. Energy Fuels 2007, 21, 1151–1160. [Google Scholar] [CrossRef]
- Lamberg, H.; Sippula, O.; Tissari, J.; Jokiniemi, J. Effects of air staging and lead on fine-particles and gaseous emissions from a small-scale pellet boiler. Energy fuels 2011, 25, 4952–4960. [Google Scholar] [CrossRef]
- Brandelet, B.; Rose, C.; Rogaume, C.; Rogaume, Y. Impact of ignition technique on total emissions of a firewood stove. Biomass Bioenergy 2018, 108, 15–24. [Google Scholar] [CrossRef]
- Ozgen, S.; Caserini, S.; Galante, S.; Giugliano, M.; Angelino, E.; Marongiu, A.; Hugony, F.; Migliavacca, G.; Morreale, C. Emission factors from small scale appliances burning wood and pellets. Atmos. Environ. 2014, 94, 144–153. [Google Scholar] [CrossRef]
- Pronobis, M.; Wojnar, W. The impact of biomass co-combustion on the erosion of boiler convection surfaces. Energy Convers. Manag. 2013, 74, 462–470. [Google Scholar] [CrossRef]
- Bauer, R.; Gölles, M.; Brunner, T.; Dourdoumas, N.; Obernberger, I. Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass Bioenergy 2010, 34, 417–427. [Google Scholar] [CrossRef]
- Porzuczek, J. Optimization of Fluidized Bed Work in Non-Stationary Conditions. Ph.D. Thesis, Cracow University of Technology, Kraków, Poland, 2009. (In Polish). [Google Scholar]
- Kubica, K. Efficient and Environmentally Friendly Source of Heat Limiting Low Emissions; Poradnik: Katowice, Poland, 2010. (In Polish) [Google Scholar]
- Musialik-Piotrowska, A.; Ciołek, J. Comparison of emissions of volatile organic compounds during wood burning. In Atmospheric Air Protection: Selected Issues, Proceedings of the 11th Conference POL-EMIS, Sienna–Czarna Góra, Poland, 13–16 June 2012; PZITS: Wrocław, Poland, 2012. (In Polish) [Google Scholar]
- EN. ISO 16127:2012 Solid biofuels—Determination of Length and Diameter of Pellets; Polish Committee for Standardization: Warsaw, Poland, 2012. [Google Scholar]
- EN. ISO 18134-3:2015 Solid Biofuels—Determination of Moisture content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; Polish Committee for Standardization: Warsaw, Poland, 2015. [Google Scholar]
- EN. PN-G-04584:2001 Solid Fuels—Determination of Total and ash Sulfur Content by Automatic Analyzers; Polish Committee for Standardization: Warsaw, Poland, 2001. [Google Scholar]
- EN. CEN/TS 15104:2006 Solid Biofuels. Determination of Total Content of Carbon, Hydrogen and Nitrogen. Instrumental Methods; British Standards Institute: London, UK, 2011. [Google Scholar]
- EN. ISO 18125:2017 Solid biofuels. Determination of Calorific Value; Polish Committee for Standardization: Warsaw, Poland, 2017. [Google Scholar]
- EN. ISO 18122:2016 Solid Biofuels—Determination of ash Content; Polish Committee for Standardization: Warsaw, Poland, 2016. [Google Scholar]
- Photon Analyzer User Manual; Version 2.2; Eljack-Electronics: Zgierz, Poland, 2014.
- EN. PN-EN 303-5:2012 Heating Boilers for Solid Fuels with Manual and Automatic Fuel Hopper of Nominal Power Up to 300 kW. Terminology, Requirements, Testing And marking; Polish Committee for Standardization: Warsaw, Poland, 2012. [Google Scholar]
- Ryu, C.; Bin Yang, Y.; Khor, A.; Yates, N.E.; Sharifi, V.N.; Swithenbank, J. Effect of fuel properties on biomass combustion: Part I. Experiments—Fuel type, equivalence ratio and particle size. Fuel 2006, 85, 1039–1046. [Google Scholar] [CrossRef]
- Kaer, S.K. Numerical modelling of a straw-fired grate boiler. Fuel 2004, 83, 1183–1190. [Google Scholar] [CrossRef]
- Kaer, S.K. Straw combustion on slow-moving grates-a comparison of model predictions with experimental data. Biomass Bioenergy 2005, 28, 307–320. [Google Scholar] [CrossRef]
- Van Der Lans, R.; Pedersen, L.; Jensen, A.D.; Glarborg, P.; Dam-Johansen, K. Modelling and experiments of straw combustion in a grate furnace. Biomass Bioenergy 2000, 19, 199–208. [Google Scholar] [CrossRef]
- Thunman, H.; Leckner, B. Ignition and propagation of a reaction front in cross-current bed combustion of wet biofuels. Fuel 2001, 80, 473–481. [Google Scholar] [CrossRef]
- Thunman, H.; Leckner, B.; Niklasson, F.; Johnsson, F. Combustion of wood particles—a particle model for eulerian calculations. Combust. Flame 2002, 129, 30–46. [Google Scholar] [CrossRef]
- Vicente, E.; Duarte, M.; Calvo, A.; Nunes, T.; Tarelho, L.A.C.; Alves, C. Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process. Technol. 2015, 131, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EU). 2015/1189 of 28 April 2015 implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Solid Fuel Boilers; Official Journal of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Reichert, G.; Schmidl, C.; Haslinger, W.; Schwabl, M.; Moser, W.; Aigenbauer, S.; Wöhler, M.; Hochenauer, C. Investigation of user behavior and assessment of typical operation mode for different types of firewood room heating appliances in Austria. Renew. Energy 2016, 93, 245–254. [Google Scholar] [CrossRef]
Parameter (Average Values) | Unit | Pine Piece Wood | Briquettes Made of Pine Sawdust | Pellets Made of Pine Sawdust | |
---|---|---|---|---|---|
Length | L | m | 0.250 | 0.039 | 0.047 |
Breadth/diameter | D | m | 0.060 | 0.050 | 0.006 |
Moisture content | MC | % | 10.00 | 9.69 | 9.78 |
Volumetric density | VD | kg·m−3 | 550 | 1027 | 965 |
Elemental composition | C | % | 51.07 | ||
H | % | 5.97 | |||
N | % | 0.22 | |||
S | % | 0.01 | |||
Lower heating value | LHV | MJ·kg−1 | 17.46 | ||
Ash content | AC | % | 0.65 |
Ignition System | Shape of Fuels | Air Flow (m·s−1) | Fuel Consumption (kg·h−1) | Air Excess Coefficient (-) | Exhaust Gas Temperature (°C) | Loss of Exhaust Gases (%) |
---|---|---|---|---|---|---|
Bottom-up | Logs | 1 | 4.16 | 3.41 | 253 | 24 |
Briquette | 1 | 4.89 | 5.11 | 292 | 24 | |
Pellets | 1 | 4.89 | 2.40 | 344 | 23 | |
Top-down | Logs | 1 | 4.17 | 3.26 | 301 | 29 |
Briquette | 1 | 4.15 | 2.41 | 363 | 25 | |
Pellets | 1 | 4.03 | 3.60 | 381 | 31 |
Variables | Combustion Ignition | Logs | Briquette | Pellets |
---|---|---|---|---|
CO (mg·m−3 at 10% O2) vs. SO2 (mg·m−3 at 10% O2) | Top-down | 0.927 | 0.409 | 0.979 |
Bottom-up | 0.885 | 0.932 | 0.964 | |
CO (mg·m−3 at 10% O2) vs. NO (mg·m−3 at 10% O2) | Top-down | −0.751 | 0.359 | 0.398 |
Bottom-up | 0.035 | 0.697 | 0.590 | |
CO (mg·m−3 at 10% O2) vs. Tgas (°C) | Top-down | −0.402 | −0.425 | 0.279 |
Bottom-up | −0.525 | −0.030 | 0.342 | |
CO (mg·m−3 at 10% O2) vs. O2 (%) | Top-down | 0.126 | 0.324 | −0.375 |
Bottom-up | 0.478 | 0.710 | 0.381 | |
SO2 (mg·m−3 at 10% O2) vs. NO (mg·m−3 at 10% O2) | Top-down | −0.582 | 0.406 | 0.453 |
Bottom-up | 0.194 | 0.768 | 0.651 | |
SO2 (mg·m−3 at 10% O2) vs. Tgas (°C) | Top-down | −0.526 | 0.342 | 0.225 |
Bottom-up | −0.595 | −0.094 | 0.342 | |
SO2 (mg·m−3 at 10% O2) vs. O2 (%) | Top-down | 0.363 | −0.439 | −0.316 |
Bottom-up | 0.598 | 0.782 | 0.408 | |
NO (mg·m−3 at 10% O2) vs. Tgas (°C) | Top-down | 0.343 | 0.323 | 0.218 |
Bottom-up | 0.044 | −0.005 | 0.329 | |
NO (mg·m−3 at 10% O2) vs. O2 (%) | Top-down | 0.068 | −0.402 | −0.246 |
Bottom-up | 0.134 | 0.805 | 0.580 | |
Tgas (°C) vs. O2 (%) | Top-down | −0.830 | −0.960 | −0.971 |
Bottom-up | −0.848 | −0.188 | −0.032 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraszkiewicz, A.; Przywara, A.; Anifantis, A.S. Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels. Energies 2020, 13, 2664. https://doi.org/10.3390/en13102664
Kraszkiewicz A, Przywara A, Anifantis AS. Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels. Energies. 2020; 13(10):2664. https://doi.org/10.3390/en13102664
Chicago/Turabian StyleKraszkiewicz, Artur, Artur Przywara, and Alexandros Sotirios Anifantis. 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels" Energies 13, no. 10: 2664. https://doi.org/10.3390/en13102664
APA StyleKraszkiewicz, A., Przywara, A., & Anifantis, A. S. (2020). Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels. Energies, 13(10), 2664. https://doi.org/10.3390/en13102664