Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katz, E.; Buckmann, A.F.; Willner, I. Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef] [PubMed]
- Dondi, D.; Bertacchini, A.; Brunelli, D.; Larcher, L.; Benini, L. Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. IEEE Trans. Ind. Electron. 2008, 55, 2759–2766. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, H.; Meena, R.S.; Palkar, V.R. A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sens. Biosens. Res. 2016, 9, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.F.; Xu, C.; Zhang, Y.; Lin, L.; Snyder, R.L.; Wang, Z.L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. J. Adv. Mater. 2011, 23, 4068–4071. [Google Scholar] [CrossRef]
- Hsu, C.L.; Chen, K.C. Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J. Phys. Chem. C 2012, 116, 9351–9355. [Google Scholar] [CrossRef]
- Ko, Y.H.; Nagaraju, G.; Lee, S.H.; Yu, J.S. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 2014, 6, 6631–6637. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.X.; Pradel, K.C.; Zhu, G.; Zhou, Y.S.; Zhang, Y.; Hu, Y.F.; Lin, L.; Wang, Z.L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Wang, X.D.; Gao, Y.F.; Wei, Y.G.; Wang, Z.L. Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res. 2009, 2, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.P.; Song, J.; Lu, M.Y.; Chen, M.T.; Gao, Y.; Chen, L.J.; Wang, Z.L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009, 9, 1223–1227. [Google Scholar] [CrossRef]
- Liu, C.W.; Chang, S.J.; Hsiao, C.H.; Lo, K.Y.; Kao, T.H.; Wang, B.C.; Young, S.J.; Tsai, K.S.; Wu, S.L. Noise properties of low-temperature-grown Co-doped ZnO nanorods as ultraviolet photodetectors. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3800707. [Google Scholar]
- Fang, X.S.; Zhai, T.Y.; Gautam, U.K.; Li, L.; Wu, L.M.; Bando, Y.S.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater Sci. 2011, 56, 175–287. [Google Scholar] [CrossRef]
- Astakhov, G.V.; Yakovlev, D.R.; Kochereshko, V.P.; Ossau, W.; Faschinger, W.; Puls, J.; Henneberger, F.; Crooker, S.A.; McCulloch, Q.; Wolverson, D.; et al. Binding energy of charged excitons in ZnSe-based quantum wells. Phys. Rev. B. 2002, 65, 165335. [Google Scholar] [CrossRef] [Green Version]
- Orton, J.W. Acceptor binding energy in GaN and related alloys. Semicond. Sci. Technol. 1995, 10, 101–104. [Google Scholar] [CrossRef]
- Young, S.J.; Tang, W.L. Wireless Zinc Oxide Based pH Sensor System. J. Electrochem. Soc. 2019, 166, B3047–B3050. [Google Scholar] [CrossRef]
- Chu, Y.L.; Ji, L.W.; Lu, H.Y.; Young, S.J.; Tang, I.T.; Chu, T.T.; Guo, J.S.; Tsai, Y.T. Fabrication and Characterization of UV Photodetectors with Cu-Doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020, 167, 027522. [Google Scholar] [CrossRef]
- Al-Ruqeishi, M.S.; Mohiuddin, T.; Al-Habsi, B.; Al-Ruqeishi, F.; Al-Fahdi, A.; Al-Khusaibi, A. Piezoelectric nanogenerator based on ZnO nanorods. Arab. J. Chem. 2016, 12, 5173–5179. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.H.; Zhao, D.X.; Shen, D.Z.; Li, B.H.; Wang, X.H. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method. J. Phys. Chem. C 2009, 113, 21208–21212. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Chang, S.J.; Ji, L.W.; Hsiao, Y.J.; Tang, I.T.; Lu, H.Y.; Chu, Y.L. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega 2018, 3, 13798–13807. [Google Scholar] [CrossRef]
- Young, S.J.; Wang, T.H. ZnO Nanorods Adsorbed with Photochemical Ag Nanoparticles for IOT and Field Electron Emission Application. J. Electrochem. Soc. 2018, 165, B3043–B3045. [Google Scholar] [CrossRef]
- Bae, S.Y.; Na, C.W.; Kang, J.H.; Park, J. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B 2005, 109, 2526–2531. [Google Scholar] [CrossRef]
- Wu, D.; Yang, M.; Huang, Z.; Yin, G.; Liao, X.; Kang, Y.; Chen, X.; Wang, H. Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution. J. Colloid Interface Sci. 2009, 330, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Chikoidze, E.; Modreanu, M.; Sallet, V.; Gorochov, O.; Galtier, P. Electrical properties of chlorine-doped ZnO thin films grown by MOCVD. Phys. Status Solidi A 2008, 205, 1575–1579. [Google Scholar] [CrossRef]
- Liu, Y.H.; Young, S.J.; Ji, L.W.; Chang, S.J. Noise Properties of Mg-Doped ZnO Nanorods Visible-Blind Photosensors. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 3800405. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Liu, J.; Wang, Z.L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Elkamel, I.B.; Hamdaoui, N.; Mezni, A.; Ajjel, R.; Beji, L. High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles. RSC Adv. 2018, 8, 32333–32343. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.H.; Huang, J.C.A. Chemical bath deposition of ZnO and Ni doped ZnO nanorod. J. Non-Cryst. Solids 2012, 358, 2453–2457. [Google Scholar] [CrossRef]
- Chen, C.C.; Wu, T.L.; Meen, T.H.; Chen, C.Y.; Su, C.H.; Tsai, J.K.; Lee, C.Y.; Lee, C.H.; Liu, D.S. ZnO Nanogenerator Prepared from ZnO Nanorods Grown by Hydrothermal Method. Sens. Mater. 2019, 31, 1083–1089. [Google Scholar] [CrossRef]
- Kim, K.H.; Jin, Z.; Abe, Y.; Kawamura, M. A comparative study on the structural properties of ZnO and Ni-doped ZnO nanostructures. Mater. Lett. 2015, 149, 8–11. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Wang, H.; Shi, Z.F.; Zhang, B.L. Adjust the Content of Nickel in NiZnO Films by Vacuum Anneal. Adv. Mater. Res. 2012, 562, 11–14. [Google Scholar] [CrossRef]
- Chithira, P.R.; John, T.T. Defect and dopant induced room temperature ferromagnetism in Ni doped ZnO nanoparticles. J. Alloy. Compd. 2018, 766, 572–583. [Google Scholar] [CrossRef]
- Chand, P.; Gaur, A.; Kumar, A.; Gaur, U.K. Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition. Ceram. Int. 2014, 40, 11915–11923. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Dinesha, M.L.; Jayanna, H.S.; Mohanty, S.; Ravi, S. Structural, electrical and magnetic properties of Co and Fe co-doped ZnO nanoparticles prepared by solution combustion method. J. Alloy. Compd. 2010, 490, 618–623. [Google Scholar] [CrossRef]
- Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Phan, J.; He, R.; Choi, H.J. Controlled Growth of ZnO Nanowires and Their Optical Properties. Adv. Funct. Mater. 2002, 12, 323–331. [Google Scholar] [CrossRef]
- Modaberi, M.R.; Rooydell, R.; Brahma, S.; Akande, A.A.; Mwakikunga, B.W.; Liu, C.P. Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors. Sens. Actuators B Chem. 2018, 273, 1278–1290. [Google Scholar] [CrossRef]
- He, J.H.; Lao, C.S.; Chen, L.J.; Davidovic, D.; Wang, Z.L. Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties. J. Am. Chem. Soc. 2005, 127, 16376–16377. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.L.; Ji, L.W.; Hsiao, Y.J.; Lu, H.Y.; Young, S.J.; Tang, I.T.; Chu, T.T.; Chen, X.J. Fabrication and Characterization of Ni-Doped ZnO Nanorod Arrays for UV Photodetector Application. J. Electrochem. Soc. 2020, 167, 067506. [Google Scholar] [CrossRef]
- Hu, C.J.; Lin, Y.H.; Tang, C.W.; Tsai, M.Y.; Hsu, W.K.; Kuo, H.F. ZnO-coated carbon nanotubes: Flexible piezoelectric generators. Adv. Mater. 2011, 23, 2941–2945. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Mater. 2004, 16, R829–R858. [Google Scholar] [CrossRef]
- Kind, H.; Yan, H.Q.; Messer, B.; Law, M.; Yang, P.D. Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Angappane, S. Synthesis, characterization and photoresponse study of un-doped and transition metal (Co, Ni, Mn) doped ZnO thin films. Mater. Sci. Eng. B 2013, 178, 1068–1075. [Google Scholar]
- Islam, R.; Chen, G.; Ramesh, P.; Suh, J.; Fuchigami, N.; Lee, D.; Littau, K.A.; Weiner, K.; Collins, R.T.; Saraswat, K.C. Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to UV/Ozone Treatment. ACS Appl. Mater. Interfaces 2017, 9, 17201–17207. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Wang, B.Q.; Liu, X.F.; Yu, D.P.; He, B.; Yu, R.H. Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 2009, 11, 063009. [Google Scholar] [CrossRef]
- Hu, Y.F.; Zhang, Y.; Xu, C.; Zhu, G.A.; Wang, Z.L. High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display. Nano Lett. 2010, 10, 5025–5031. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.-L.; Young, S.-J.; Ji, L.-W.; Chu, T.-T.; Chen, P.-H. Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies 2020, 13, 2731. https://doi.org/10.3390/en13112731
Chu Y-L, Young S-J, Ji L-W, Chu T-T, Chen P-H. Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies. 2020; 13(11):2731. https://doi.org/10.3390/en13112731
Chicago/Turabian StyleChu, Yen-Lin, Sheng-Joue Young, Liang-Wen Ji, Tung-Te Chu, and Po-Hao Chen. 2020. "Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators" Energies 13, no. 11: 2731. https://doi.org/10.3390/en13112731
APA StyleChu, Y.-L., Young, S.-J., Ji, L.-W., Chu, T.-T., & Chen, P.-H. (2020). Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies, 13(11), 2731. https://doi.org/10.3390/en13112731